AMPS | MMC | THARC | KE8QZC | WW
cv icon mathscinet icon mastodon icon youtubeicon github icon researchgate icon ORCID iD icon zbmath icon google scholar icon chess.com icon

Back to the class
Homework 11 (MATH 1199 Fall 2019)
1. Let $C$ be a contour that surrounds all of the poles. Use the residue theorem (and the "shortcut theorem" to find residues) to compute the integral of...
(a) $f(z)=\dfrac{e^z \cos(z)}{z^2+1}$
(b) $f(z)=\dfrac{z^2\sin(z)}{(z+1)^2}$
(c) $f(z)=\dfrac{\cos(z)\sin(z)}{z^2+2z+1}$

2. Recall that the inversion integral for the Laplace transform of a function $F$ with poles at $z_1, \ldots, z_n$ is $$f(t) = \dfrac{1}{2\pi i} \displaystyle\int_C F(z)e^{zt} \mathrm{d}z,$$ where $C$ is a contour around the poles. Use the inversion integral to invert...
(a) $F(z)=\dfrac{1}{z^2+9}$
(b) $F(z)=\dfrac{z}{z^2+4}$
(c) $F(z)=\dfrac{1}{(z+a)^2(z+b)^2}$