AMPS | MMC | THARC | KE8QZC | WW
cv icon mathscinet icon mastodon icon youtubeicon github icon researchgate icon ORCID iD icon zbmath icon google scholar icon chess.com icon

Back to the class
Homework 10 (MATH 1199 Fall 2019)
1. Find a Laurent series, centered at $0$, for the function $f(z)=\dfrac{1+5z^3}{z^4+z^7}$. Use that Laurent series with the Laurent series theorem to compute $\displaystyle\int_C \dfrac{1+5z^3}{z^4+z^7} \mathrm{d}z$ where $C$ is the circle $|z|=\frac{1}{2}$, oriented positively.

2. Find a Laurent series, centered at $0$, for $e^{\frac{1}{z^4}}$. Use that Laurent series with the Laurent series theorem to compute $\displaystyle\int_C e^{\frac{1}{z^4}} \mathrm{d}z$ where $C$ is the unit circle, oriented positively.

3. Find the three series for the function $f(z)=\dfrac{-1}{(z-2)(z-3)}$ in the relevant disks and annuli.

4. Find the residue at $z=0$ of...
(a) $\dfrac{1}{z+z^2}$
(b) $z \cos \left( \dfrac{1}{z} \right)$ (recall: $\cos(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k}}{(2k)!}$ )
(c) $\dfrac{z-\sin(z)}{z}$ (recall: $\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k+1}}{(2k+1)!}$)