AMPS | KE8QZC | SFW | TSW
ORCID iD icon

Syllabus
Book we're following (free!)
Online homework here

Homework
For Exam 1 (ultimately due by 5 February)
HW1: Systems of linear equations (recommended due date 17 January)
HW2: Row operations and augmented matrices (recommended due date 29 January)

For Exam 2 (ultimately due 4 March)
HW3: Matrix arithmetic
HW4: Transposes and inverses
HW5: Elementary matrices
HW6: Determinants

Quizzes
For Exam 1
Quiz 1 (due 18 Jan in Blackboard) [soln]: Put the system into reduced row echelon form and interpret that form back as a system of linear equations:
$$\left\{ \begin{array}{lll} 2x&+17y&=23 \\ x&-y&=5 \\ 3x&-34y&=3 \end{array}\right.$$ Quiz 2 (due 25 Jan in Blackboard) [soln]: Put the following matrix into row reduced echelon form: $\begin{bmatrix} 0&1&3 \\ -1&-3&3 \\ 1&-3&0\end{bmatrix}$.
Quiz 3 (due 29 Jan in Blackboard) [soln]: Find the rank of $\begin{bmatrix} 2&1&0 \\ 0&2&2 \\ -1&3&1 \end{bmatrix}$.
Quiz 4 (due 5 Feb in Blackboard): Use linear algebra to balance the following chemical reaction: \[ XeF_4 + H_2O \longrightarrow Xe + HF + O_2 + XeO_3 \] For Exam 2
Quiz 5 (due 13 February in Blackboard) [soln]: Find the inverse, if it exists, of the matrix $\begin{bmatrix} -1&4&5 \\ 3&6&-2 \\ 4&3&1 \end{bmatrix}$.
Quiz 6 (due 22 Feb in Blackboard) [soln]: Compute \[ \mathrm{det} \left( \begin{bmatrix} 4&0&7 \\ 7&18&5 \\ 21&0&0 \end{bmatrix}\right) \]
Exams
Exam 1
Exam 2
Exam 3