AMPS | MMC | THARC | KE8QZC | WW
cv icon mathscinet icon mastodon icon youtubeicon github icon researchgate icon ORCID iD icon zbmath icon google scholar icon chess.com icon

Syllabus
Book we're following (free!)
Online homework here

Homework
For Exam 1 (ultimately due by 5 February)
HW1: Systems of linear equations (recommended due date 17 January)
HW2: Row operations and augmented matrices (recommended due date 29 January)

For Exam 2 (ultimately due 4 March)
HW3: Matrix arithmetic
HW4: Transposes and inverses
HW5: Elementary matrices
HW6: Determinants
For Exam 3 (ultimately due 8 April)
HW7: Span and linear independence and basis
HW8: Rowspace and column space and nullspace
For final exam (ultimately due 27 April)
HW9: Eigenvalues and eigenvectors
HW10: Diagonalization
HW11: Linear transformations

Quizzes
For Exam 1
Quiz 1 (due 18 Jan in Blackboard) [soln]: Put the system into reduced row echelon form and interpret that form back as a system of linear equations:
$$\left\{ \begin{array}{lll} 2x&+17y&=23 \\ x&-y&=5 \\ 3x&-34y&=3 \end{array}\right.$$ Quiz 2 (due 25 Jan in Blackboard) [soln]: Put the following matrix into row reduced echelon form: $\begin{bmatrix} 0&1&3 \\ -1&-3&3 \\ 1&-3&0\end{bmatrix}$.
Quiz 3 (due 29 Jan in Blackboard) [soln]: Find the rank of $\begin{bmatrix} 2&1&0 \\ 0&2&2 \\ -1&3&1 \end{bmatrix}$.
Quiz 4 (due 5 Feb in Blackboard): Use linear algebra to balance the following chemical reaction: \[ XeF_4 + H_2O \longrightarrow Xe + HF + O_2 + XeO_3 \] For Exam 2
Quiz 5 (due 13 February in Blackboard) [soln]: Find the inverse, if it exists, of the matrix $\begin{bmatrix} -1&4&5 \\ 3&6&-2 \\ 4&3&1 \end{bmatrix}$.
Quiz 6 (due 22 Feb in Blackboard) [soln]: Compute \[ \mathrm{det} \left( \begin{bmatrix} 4&0&7 \\ 7&18&5 \\ 21&0&0 \end{bmatrix}\right) \] For Exam 3
Quiz 7 (due 7 March in Blackboard) [soln]: Show independent or dependent:
\[ \left\{ \begin{bmatrix} 1\\ 1\\ 6\\ 2 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}.\] Quiz 8 (due 16 March 25 March in Blackboard) [soln]: Find a basis for $\text{row}(A)$ and $\text{col}(A)$ where $A = \begin{bmatrix} 4&2&0 \\ 1&6&7 \\ 9&1&8\end{bmatrix}$ and compute $\text{rank}(A)$.
Quiz 9 (due 26 March in Blackboard) [soln]: Find $\text{nul}(A)$ for $A=\begin{bmatrix} 3&1&0 \\ 0&1&1 \\ 4&2&-1 \end{bmatrix}$.
Quiz 10 (due 16 Apr in Blackboard) []: Suppose $T \colon \mathbb{R}^{2 \times 1} \rightarrow \mathbb{R}^{5\times 1}$ is a linear transformation and assume that $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right)=\begin{bmatrix} 1\\0\\0\\1\\1\end{bmatrix}$ and $T\left(\begin{bmatrix} -2 \\1 \end{bmatrix} \right)=\begin{bmatrix} 0\\0\\1\\0\\1\end{bmatrix}$. Find $A$ so that for all $\vec{x}$, $T(\vec{x})=A\vec{x}$.
Exams
Exam 1
Exam 2
Exam 3