Honors section
1. Use integration by parts to verify the following formula for an arbitrary $n>1$ (i.e. keep "$n$" in your integrals!):
$$\displaystyle\int \cos^n(x) \mathrm{d}x = \dfrac{\cos^{n-1}(x)\sin(x)}{n} + \dfrac{n-1}{n} \displaystyle\int \cos^{n-2}(x) \mathrm{d}x.$$
2. Use the formula from the previous problem to establish the following formulas:
a.) if $n$ is odd and $n \geq 3$, then
$$\displaystyle\int_0^{\frac{\pi}{2}} \cos^n(x) \mathrm{d}x = \left( \dfrac{2}{3} \right) \left( \dfrac{4}{5} \right) \left( \dfrac{6}{7} \right) \ldots \left( \dfrac{n-1}{n} \right).$$
b.) if $n$ is even and $n \geq 2$, then
$$\displaystyle\int_0^{\frac{\pi}{2}} \cos^n(x) \mathrm{d}x = \left( \dfrac{1}{2} \right) \left( \dfrac{3}{4} \right) \left( \dfrac{5}{6} \right) \ldots \left( \dfrac{n-1}{n} \right) \left( \dfrac{\pi}{2} \right).$$
3. Recall that an ellipse obeys the formula $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2}=1$ for some $a,b > 0$.
a.) Solve this equation for $y$ to get an equation for the "top half" of the ellipse.
b.) Integrate the function from part a.) over the interval $[-a,a]$ and multiply by 2 to find a formula for the area of the ellipse.