AMPS | MMC | THARC | KE8QZC | WW
cv icon mathscinet icon mastodon icon youtubeicon github icon researchgate icon ORCID iD icon zbmath icon google scholar icon chess.com icon

Back to the class
The following integral was encountered in class (I guessed the correct first step in class!): $$\displaystyle\int \csc(x) \mathrm{d}x.$$ We looked up in the book that the anti-derivative is $$\displaystyle\int \csc(x) \mathrm{d}x = -\ln(\cot(x)+\csc(x)) + C.$$
Derivation of this integral formula
We will rewrite $$\csc(x) = \dfrac{1}{\sin(x)} = \dfrac{\sin(x)}{\sin^2(x)},$$ and apply the Pythagorean identity $\sin^2(x)+\cos^2(x)=1$ rearranged to $\sin^2(x)=1-\cos^2(x)$ in the denominator to write $$\csc(x) = \dfrac{\sin(x)}{1-\cos^2(x)}.$$ If we use the $u$-substitution $u=\cos(x)$ hence $\mathrm{d}u=-\sin(x)\mathrm{dx}$ we get $$\displaystyle\int \csc(x) \mathrm{d}x = \displaystyle\int \dfrac{\sin(x)}{1-\cos^2(x)} \mathrm{d}x=-\displaystyle\int \dfrac{1}{1-u^2} \mathrm{d}u.$$ Notice the following algebraic fact (we will "find" this sort of thing when we do partial fraction decompositions in chapter 8): $$\dfrac{1}{u-1} - \dfrac{1}{u+1} = \dfrac{2}{u^2-1},$$ or in other words $$\dfrac{1}{2} \left[ \dfrac{1}{u-1} - \dfrac{1}{u+1} \right] = \dfrac{1}{u^2-1}.$$ Using that fact of algebra, we can finally complete the integral: $$\begin{array}{ll} \displaystyle\int \csc(x) \mathrm{d}x &= -\displaystyle\int \dfrac{1}{1-u^2} \mathrm{d}u \\ &= -\left[\dfrac{1}{2} \displaystyle\int \dfrac{1}{u-1} \mathrm{d}u - \dfrac{1}{2}\displaystyle\int \dfrac{1}{u+1} \mathrm{d}u \right] \\ &\stackrel{w=u-1,z=u+1}{=} -\left[ \dfrac{1}{2} \displaystyle\int \dfrac{1}{w} \mathrm{d}w - \dfrac{1}{2} \displaystyle\int \dfrac{1}{z} \mathrm{d}z \right] \\ &=-\left[\dfrac{1}{2}\ln(|w|) - \dfrac{1}{2} \ln(|z|) \right] +C \\ &= -\left[ \dfrac{1}{2}\ln(|u-1|) - \dfrac{1}{2} \ln(|u+1|) \right] + C \\ &= -\left[ \dfrac{1}{2} \ln(|\cos(x)-1|) - \dfrac{1}{2} \ln(|\cos(x)+1|)\right] + C \\ &=-\left[ \dfrac{1}{2} \ln \left( \left| \dfrac{\cos(x)-1}{\cos(x)+1} \right| \right) \right] + C \\ &= -\left[ \dfrac{1}{2} \ln \left( \left| \left( \dfrac{\cos(x)-1}{\cos(x)+1} \right)\left( \dfrac{\cos(x)-1}{\cos(x)-1} \right) \right| \right) \right] + C \\ &= -\left[ \dfrac{1}{2} \ln \left( \dfrac{(1-\cos(x))^2}{\cos^2(x)-1} \right) \right] + C \\ &= -\left[ \dfrac{1}{2} \ln \left( \left[ \dfrac{1-\cos(x)}{\sin(x)} \right]^2 \right) \right] + C\\ &= -\ln \left( \sqrt{ \left[ \dfrac{1-\cos(x)}{\sin(x)} \right]^2 } \right) + C \\ &= -\ln \left( \dfrac{1-\cos(x)}{\sin(x)} \right) + C \\ &= -\ln \left( \dfrac{1}{\sin(x)} - \dfrac{\cos(x)}{\sin(x)} \right) + C \\ &= -\ln(\csc(x) - \cot(x)) + C, \end{array}$$ as was to be shown.
The technique that would be used here to find $\dfrac{1}{u^2-1}=\dfrac{1}{u-1} - \dfrac{1}{u+1}$ is called partial fraction decomposition, and it is what was needed in the question from 20 January 2017 class.