Processing math: 100%
AMPS | THARC | KE8QZC | SFW | TSW | WW
ORCID iD icon

Back to the class

Section 9.1 #11: Simplify tan(x)cot(x). Solution: Recall the "odd property" sin(x)=sin(x) and the "even property" cos(x)=cos(x). Now simplify tan(x)cot(x)=sin(x)cos(x)cos(x)sin(x)=sin(x)cos(x)cos(x)sin(x)=1.

Section 9.1 #12: Simplify sin(x)cos(x)sec(x)csc(x)tan(x)cot(x). Solution: Calculate sin(x)cos(x)sec(x)csc(x)tan(x)cot(x)=(sin(x))cos(x)1cos(x)1sin(x)sin(x)cos(x)cos(x)sin(x)=sin(x)cos(x)cos(x)sin(x)=cos2(x)sin2(x).

Section 9.1 #15: Simplify 1cos2(x)tan2(x)+2sin2(x). Solution: Recall the Pythagorean identity cos2(x)+sin2(x)=1. Rearranging that identity yields sin2(x)=1cos2(x). So, Compute 1cos2(x)tan2(x)+2sin2(x)=sin2(x)sin2(x)cos2(x)+2sin2(x)=(sin2(x))(cos2(x)sin2(x))+2sin2(x)=cos2(x)+2sin2(x)=(cos2(x)+sin2(x))+sin2(x)=1+sin2(x).

Section 9.1 #20: Write the first expression in terms of the second expression: 11cos(x)cos(x)1+cos(x);csc(x). Solution: Calculate 11cos(x)cos(x)1+cos(x)=(1+cos(x))cos(x)(1cos(x))(1cos(x))(1+cos(x))=1+cos(x)cos(x)+cos2(x)1cos2(x)=1+cos2(x)sin2(x)=1+(1sin2(x))sin2(x)=2sin2(x)1=2csc2(x)1.