Processing math: 100%
Back to the class
Section 9.1 #11: Simplify
−tan(−x)cot(−x).
Solution: Recall the "odd property" sin(−x)=−sin(x) and the "even property" cos(−x)=cos(x). Now simplify
−tan(−x)cot(−x)=−sin(−x)cos(−x)cos(−x)sin(−x)=−−sin(x)cos(x)cos(x)−sin(x)=−1.
Section 9.1 #12: Simplify
−sin(−x)cos(x)sec(x)csc(x)tan(x)cot(x).
Solution: Calculate
−sin(−x)cos(x)sec(x)csc(x)tan(x)cot(x)=−(−sin(x))cos(x)1cos(x)1sin(x)sin(x)cos(x)cos(x)sin(x)=sin(x)cos(x)cos(x)sin(x)=cos2(x)sin2(x).
Section 9.1 #15: Simplify
1−cos2(x)tan2(x)+2sin2(x).
Solution: Recall the Pythagorean identity cos2(x)+sin2(x)=1. Rearranging that identity yields sin2(x)=1−cos2(x). So, Compute
1−cos2(x)tan2(x)+2sin2(x)=sin2(x)sin2(x)cos2(x)+2sin2(x)=(sin2(x))(cos2(x)sin2(x))+2sin2(x)=cos2(x)+2sin2(x)=(cos2(x)+sin2(x))+sin2(x)=1+sin2(x).
Section 9.1 #20: Write the first expression in terms of the second expression:
11−cos(x)−cos(x)1+cos(x);csc(x).
Solution: Calculate
11−cos(x)−cos(x)1+cos(x)=(1+cos(x))−cos(x)(1−cos(x))(1−cos(x))(1+cos(x))=1+cos(x)−cos(x)+cos2(x)1−cos2(x)=1+cos2(x)sin2(x)=1+(1−sin2(x))sin2(x)=2sin2(x)−1=2csc2(x)−1.