AMPS | MMC | THARC | KE8QZC | WW
cv icon mathscinet icon mastodon icon youtubeicon github icon researchgate icon ORCID iD icon zbmath icon google scholar icon chess.com icon

Back to the class
Quiz 13
1. Vector or scalar?
a.) $25 \dfrac{\mathrm{miles}}{\mathrm{hour}}$
b.) $25 \dfrac{\mathrm{miles}}{\mathrm{hour}}$ north
Solution: For a.), it is a scalar (it has no direction). For b.), it is a vector because it has a magnitude (the speed) and a direction (north).

2. Sketch the resultant $\vec{x}+\vec{y}$ where $\vec{x}=$ and $\vec{y}=$.
Solution: Calculate
$\vec{x}+\vec{y}=$

3. Sketch the resultant of $2\vec{x}-\vec{y}$ where $\vec{x}=$ and $\vec{y}=$.
Solution: Here, $2\vec{x}=$ and $-\vec{y}=$. So,
$2\vec{x}-\vec{y}=2\vec{x}+(-\vec{y})=$

4. Find the components of the vector that is drawn:

Solution: By the definition of cosine, $\cos(10^{\circ})=\dfrac{x}{3}$, or in other words, $$x=3\cos(10^{\circ})=2.954$$ and the definition of sine gives $\sin(10^{\circ})=\dfrac{y}{3}$, or in other words, $$y=3\sin(10^{\circ})=0.5209.$$

5. Find the components of the vector that is drawn:

Solution: Here both the $x$-component and $y$-component are negative. The reference angle of $205^{\circ}$ is $205^{\circ}-180^{\circ}=25^{\circ}$. So $$x=-117\cos(25^{\circ})=-106,$$ and $$y=-117\sin(25^{\circ})=-49.45.$$