Back to the class Section 4.2 #24: Compute
$$\displaystyle\sum_{k=1}^n \dfrac{2k^3-3k}{n^2}$$
for $n=10$, $100$, $1000$, and $10000$. Solution: Using the properties of summations and the formulas in Theorem 4.2:
$$\begin{array}{ll}
\displaystyle\sum_{k=1}^n \dfrac{2k^3 - 3k}{n^2} &= \dfrac{2}{n^2} \left( \displaystyle\sum_{k=1}^n k^3 \right) - \dfrac{3}{n^2} \left( \displaystyle\sum_{k=1}^n k \right) \\
&= \dfrac{2}{n^2} \left( \dfrac{n^2(n+1)^2}{4} \right) - \dfrac{3}{n^2} \left( \dfrac{n(n+1)}{2} \right) \\
\end{array}$$
Therefore we see for $n=10$, the sum equals
$$\dfrac{2}{100} \left( \dfrac{100(121)}{4} \right) - \dfrac{3}{100} \left( \dfrac{10(11)}{2} \right)= \dfrac{121}{2} - \dfrac{33}{20} = \dfrac{1177}{20}.$$
For $n=100$, the sum equals $\dfrac{1019797}{2}$, for $n=1000$ the sum equals $5009989985$, and for $n=10000$ the sum equals $50009998999850$.