AMPS | MMC | THARC | KE8QZC | WW
cv icon mathscinet icon mastodon icon youtubeicon github icon researchgate icon ORCID iD icon zbmath icon google scholar icon chess.com icon

Back to the class
A.) Use implicit differentiation and basic trigonometry to find $\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{arccos}(x)$ where $\mathrm{arccos}$ denotes the inverse cosine function.
Solution: Since inverse trig functions output angles, let us write $\theta=\arccos(x)$. Consequently, $$\cos(\theta)=x.$$ This means that $$\dfrac{\mathrm{d}\theta}{\mathrm{d}x}=\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{arccos}(x).$$ Since the derivative of $\cos(x)$ is $-\sin(x)$, implicit differentiation shows that $$-\sin(\theta) \dfrac{\mathrm{d}\theta}{\mathrm{d}x} = 1,$$ and so we see $$\dfrac{\mathrm{d}\theta}{\mathrm{d}x} = \dfrac{-1}{\sin(\theta)}.$$ To complete the problem, we must determine how to express $\sin(\theta)$ in terms of the variable $x$. Since we already know that $\cos(\theta)=x$, remembering the fact from right triangle trigonometry that the cosine of an angle is the "adjacent divided by the hypotenuse", we may draw the following picture:

Remembering that $\sin(\theta)$ is the "opposite divided by the hypotenuse" means we need to find the length of the missing side. Call the unknown length $?$. The Pythagorean theorem tells us that $$?^2 + x^2 = 1^2.$$ Solving for $?$ yields $$? = \pm \sqrt{1-x^2}.$$ Since the length of the side of a triangle cannot be negative, we must take the value $$? = \sqrt{1-x^2}.$$ This completes the triangle and so we see that $$\sin(\theta) = \dfrac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}.$$ Therefore we get $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{arccos}(x) = \dfrac{\mathrm{d}\theta}{\mathrm{d}x} = -\dfrac{1}{\sin(\theta)} = -\dfrac{1}{\sqrt{1-x^2}}.$$

Section 2.5 #5: Find $\dfrac{\mathrm{d}y}{\mathrm{d}x}$ from the following equation: $$x^3-xy+y^2=7.$$
Solution: Differentiate on both sides (differentiating implicitly where appropriate) to get $$3x^2 - \left(y + x \dfrac{\mathrm{d}y}{\mathrm{d}x} \right) + 2y\dfrac{\mathrm{d}y}{\mathrm{d}x} = 0.$$ Take the terms that have no $\dfrac{\mathrm{d}y}{\mathrm{d}x}$ in them to the other side to get $$-x \dfrac{\mathrm{d}y}{\mathrm{d}x}+2y \dfrac{\mathrm{d}y}{\mathrm{d}x} = - 3x^2 + y.$$ Factor the $\dfrac{\mathrm{d}y}{\mathrm{d}x}$ in the left side and then divide to get $$\dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{-3x^2+y}{2y-x}.$$

Section 2.5 #39: Find an equation of the tangent line to the lemniscate $$3(x^2+y^2)^2 = 100 (x^2-y^2)$$ at the point $(4,2)$.
Solution: Differentiate implicitly (note there is an extra chain rule on the left!) to get $$6(x^2+y^2) \left(2x + 2y \dfrac{\mathrm{d}y}{\mathrm{d}x} \right) = 100 \left( 2x - 2y \dfrac{\mathrm{d}y}{\mathrm{d}x} \right).$$ Take all the terms with a $\dfrac{\mathrm{d}y}{\mathrm{d}x}$ in them to the left side and everything else to the right side: $$12y(x^2+y^2) \dfrac{\mathrm{d}y}{\mathrm{d}x}+200y \dfrac{\mathrm{d}y}{\mathrm{d}x} = 200x - 12x(x^2+y^2).$$ Now solve for $\dfrac{\mathrm{d}y}{\mathrm{d}x}$ to get $$\dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{200x - 12x(x^2+y^2)}{12y(x^2+y^2)+200y}=\dfrac{x(50-3x^2-3y^2)}{y(50+3x^2+3y^2)}.$$ We get the slope of the tangent line by plugging in the point $(4,2)$ into this formula, i.e. $x=4$ and $y=2$: $$\mathrm{slope}=\dfrac{\mathrm{d}y}{\mathrm{d}x} \Bigg|_{x=4,y=2} = \dfrac{4(50-3\cdot 16 - 3 \cdot 4)}{2(50 + 3 \cdot 16 + 3 \cdot 4)}=-\dfrac{2}{11}.$$ Therefore using the point-slope form of the equation of a line, i.e. $y-y-1=m(x-x_1)$ using the point $(4,2)$, we get $$y-2=-\dfrac{2}{11} (x-4).$$ Indeed, this answer is worth full credit, but you could also put this in $y=mx+b$ form to get $$y=- \dfrac{2x}{11}+\dfrac{30}{11}.$$

Section 2.6 #11: The radius $r$ of a circle is increasing at a rate of $4$ centimeters per minute. Find the rates of change of the area when
a.) $r=8$ centimeters
b.) $r=32$ centimeters
Solution:
Variables: $r$ -- radius of circle, $A$ -- area of circle
Known rate: $\dfrac{\mathrm{d}r}{\mathrm{d}t}=4 \dfrac{\mathrm{cm}}{\mathrm{min}}$
Equation: Area equation of circle: $A = \pi r^2$
We seek: $\dfrac{\mathrm{d}A}{\mathrm{d}t}$ when $r=8$ (part a) and when $r=32$ (part b).
Differentiate the equation for area to get $$\dfrac{\mathrm{d}A}{\mathrm{d}t} = 2\pi r \dfrac{\mathrm{d}r}{\mathrm{d}t}.$$ part a.) To find $\dfrac{\mathrm{d}A}{\mathrm{d}t}$ when $r=8$, plug the known rate $\dfrac{\mathrm{d}r}{\mathrm{d}t}$ and $r=8$ into the equation to get $$\dfrac{\mathrm{d}A}{\mathrm{d}t} = 2 \pi (8) (4) = 64 \pi \dfrac{\mathrm{cm}^2}{\mathrm{min}}.$$ part b.) To find $\dfrac{\mathrm{d}A}{\mathrm{d}t}$ when $r=32$, plug the known rate $\dfrac{\mathrm{d}r}{\mathrm{d}t}$ and $r=32$ into the equation to get $$\dfrac{\mathrm{d}A}{\mathrm{d}t}=2 \pi (32)(4) = 256\pi \dfrac{\mathrm{cm}^2}{\mathrm{min}}.$$

Section 2.5 #35: The combined electrical resistance $R$ of two resistors $R_1$ and $R_2$, connected in parallel, is given by $$\dfrac{1}{R} = \dfrac{1}{R_1} + \dfrac{1}{R_2},$$ where $R, R_1,$ and $R_2$ are measured in ohms. $R_1$ and $R_2$ are increasing at a rate of $1$ and $1.5$ ohms per second, respectively. At what rate is $R$ changing when $R_1=50$ ohms and $R_2=75$ ohms?
Solution:
Variables: $R$ -- resistance, $R_1$ -- first resistor, $R_2$ -- second resistor
Known rates: $\dfrac{\mathrm{d}R_1}{\mathrm{d}t}=1 \dfrac{\mathrm{ohm}}{\mathrm{sec}}$ and $\dfrac{\mathrm{d}R_1}{\mathrm{d}t}=1.5 \dfrac{\mathrm{ohm}}{\mathrm{sec}}$
Equation: we are told the equation in this problem: $\dfrac{1}{R} = \dfrac{1}{R_1} + \dfrac{1}{R_2}$
We seek: $\dfrac{\mathrm{d}R}{\mathrm{d}t}$ when $R_1=50$ and $R_2=75$
Recall that $\dfrac{\mathrm{d}}{\mathrm{d}x} \dfrac{1}{x} = -\dfrac{1}{x^2}$, we differentiate our equation (implicitly) and get $$-\dfrac{1}{R^2} \dfrac{\mathrm{d}R}{\mathrm{d}t} = -\dfrac{1}{R_1^2} \dfrac{\mathrm{d}R_1}{\mathrm{d}t} - \dfrac{1}{R_2^2} \dfrac{\mathrm{d}R_2}{\mathrm{d}t}.$$ We know the two rates $\dfrac{\mathrm{d}R_1}{\mathrm{d}t}=1$ and $\dfrac{\mathrm{d}R_2}{\mathrm{d}t}=1.5$. We are told to use $R_1=50$ and $R_2=75$. Plugging all this information in yields $$(*) \hspace{40pt} -\dfrac{1}{R^2} \dfrac{\mathrm{d}R}{\mathrm{d}t} = -\dfrac{1}{50^2} (1) - \dfrac{1}{75^2} (1.5).$$ Notice that we are not told the value of $R$ in this problem. To find it, we must use the equation $\dfrac{1}{R} = \dfrac{1}{R_1} + \dfrac{1}{R_2}$ and solve for $R$ to get $$R = \dfrac{1}{\frac{1}{R_1} + \frac{1}{R_2}}.$$ Plugging in $R_1=50$ and $R_2=75$, arithmetic shows us that $$R = \dfrac{1}{\frac{1}{50} + \frac{1}{75}} = 30.$$ Finally, plug in this value of $R$ into the equation $(*)$ to get $$-\dfrac{1}{30^2} \dfrac{\mathrm{d}R}{\mathrm{d}t} = -\dfrac{1}{50^2} - \dfrac{1.5}{75^2}.$$ Solve for $\dfrac{\mathrm{d}R}{\mathrm{d}t}$ by multiplying by $-30^2$ to get $$\dfrac{\mathrm{d}R}{\mathrm{d}t} = \dfrac{30^2}{50^2} + \dfrac{1.5(30^2)}{75^2} = \dfrac{3}{5} \dfrac{\mathrm{ohm}}{\mathrm{sec}}= 0.6 \dfrac{\mathrm{ohm}}{\mathrm{sec}}.$$