AMPS | MMC | THARC | KE8QZC | WW
cv icon mathscinet icon mastodon icon youtubeicon github icon researchgate icon ORCID iD icon zbmath icon google scholar icon chess.com icon

Back to the class
Quiz 18
1.) Find the least common multiple of the numbers $3$, $6$, and $5$.
Solution: Since $3$ is prime, $6=3 \cdot 2$, and $5$ is prime, the least common multiple is $$2 \cdot 3 \cdot 5 = 30.$$

2.) Find the least common multiple of $(x+1)(x+2)^2$, $(x+1)^2(x+2)$, and $(x+1)(x+2)$.
Solution: The least common multiple is $$(x+1)^2(x+2)^2.$$

3.) Find the least common multiple of $x^2+4x+4$, $x^2+3x+2$, and $x^2+5x+6$.
Solution: Since we can factor $$x^2+4x+4=(x+2)^2,$$ $$x^2+3x+2=(x+1)(x+2),$$ and $$x^2+5x+6=(x+3)(x+2),$$ the least common multiple is $$(x+1)(x+2)^2(x+3).$$

4.) Add and simplify:
$$\dfrac{1}{2} + \dfrac{1}{3}.$$ Solution: The least common denominator is $6$. Therefore $\dfrac{1}{2}=\dfrac{3}{6}$ and $\dfrac{1}{3}=\dfrac{2}{6}$. Now we may add: $$\dfrac{1}{2} +\dfrac{1}{3} = \dfrac{3}{6} + \dfrac{2}{6} = \dfrac{1+2}{6} = \dfrac{5}{6}.$$

5.) Add and simplify:
$$\dfrac{1}{x+1} + \dfrac{1}{x+2}.$$ Solution: The least common denominator is $(x+1)(x+2)$, so we may rewrite $$\dfrac{1}{x+1} = \dfrac{x+2}{(x+1)(x+2)},$$ and $$\dfrac{1}{x+2} = \dfrac{x+1}{(x+1)(x+2)}.$$ Now we may add: $$\dfrac{1}{x+1} + \dfrac{1}{x+2} = \dfrac{x+2}{(x+1)(x+2)} + \dfrac{x+1}{(x+1)(x+2)} = \dfrac{2x+3}{(x+1)(x+2)}.$$