AMPS | MMC | THARC | KE8QZC | WW
cv icon mathscinet icon mastodon icon youtubeicon github icon researchgate icon ORCID iD icon zbmath icon google scholar icon chess.com icon

Back to the class
Quiz 17
1.) For which values of $x$ is the following expression defined? $$\dfrac{3x^2+2x+1}{5x+2}.$$ Solution: It is defined for all $x$ with the property that $$5x+2 \neq 0,$$ i.e. $x \neq -\dfrac{2}{5}$.

2.) For which values of $x$ is the following expression defined? $$\dfrac{2x+1}{x^2+5x+6}.$$ Solution: It is defined for all $x$ with the property that $$x^2+5x+6 \neq 0,$$ i.e. $$(x+3)(x+2) \neq 0,$$ i.e. $x+3 \neq 0$ or $x+2 \neq 0$. Therefore $x \neq -3$ and $x \neq -2$.

3.) Multiply and simplify $$\dfrac{(t+5)(2t+6)}{5t+3} \cdot \dfrac{10t+6}{(t-5)(2t+6)}.$$ Solution: Multiply to get $$\begin{array}{ll} \dfrac{(t+5)(2t+6)}{5t+3} \cdot \dfrac{10t+6}{(t-5)(2t+6)} &= \dfrac{2(t+5)(t+3)}{5t+3} \cdot \dfrac{2(5t+3)}{2(t-5)(t+3)} \\ &=\dfrac{2(t+5)}{(t-5)} \end{array}$$

4.) Multiply and simplify $$\left( \dfrac{t^2-25}{t^2+8t+7} \right) \left( \dfrac{t+7}{t-5} \right).$$ Solution: Multiply to get $$\begin{array}{ll} \left( \dfrac{t^2-25}{t^2+8t+7} \right) \left( \dfrac{t+7}{t-5} \right) &= \left( \dfrac{(t-5)(t+5)}{(t+7)(t+1)} \right) \left( \dfrac{t+7}{t-5} \right) \\ &=\dfrac{t+5}{t+1}. \end{array}$$

5.) Add $$\dfrac{7t+4}{t^2+1} + \dfrac{t-3}{t^2+1}.$$ Solution: Compute $$\dfrac{7t+4}{t^2+1} + \dfrac{t-3}{t^2+1} = \dfrac{7t+4+t-3}{t^2+1} = \dfrac{8t+1}{t^2+1}.$$