#4,pg.121: Compute the product of partitioned matrices $\begin{bmatrix} I & 0 \\ -E & I \end{bmatrix} \begin{bmatrix} W & X \\ Y & Z \end{bmatrix}$ (assume the partitions chosen make sense for multiplication). Solution: Compute the same way as "normal" matrix multiplication:
$$\begin{bmatrix} I & 0 \\ -E & I \end{bmatrix} \begin{bmatrix} W & X \\ Y & Z \end{bmatrix} = \begin{bmatrix} IW+0Y & IX+0Z \\ -EW+IY & -EX+IZ \end{bmatrix}=\begin{bmatrix} W & X \\ -EW+Y & -EX+Z \end{bmatrix}.$$