AMPS | THARC | KE8QZC | SFW | TSW
ORCID iD icon

Back to the class
Problems #13,24 on pg.229 are graded.

#13,pg.229: Determine the dimensions of $\mathrm{Nul} A$ and $\mathrm{Col} A$ for the matrix $$A=\begin{bmatrix} 1&-6&9&0&-2 \\ 0&1&2&-4&5 \\ 0&0&0&5&1 \\ 0&0&0&0&0 \end{bmatrix}.$$ Solution: This matrix is in echelon form. If we compute the reduced echelon form we get $$\begin{bmatrix} 1&-6&9&0&-2 \\ 0&1&2&-4&5 \\ 0&0&0&5&1 \\ 0&0&0&0&0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 21 & 0 & \frac{164}{5} \\ 0&1&2&0&\frac{29}{5} \\ 0&0&0&1&\frac{1}{5} \\ 0&0&0&0&0 \end{bmatrix}.$$ Notice that this is the coefficient matrix of the matrix equation $A\vec{x}=\vec{0}$ (notice that $\vec{x}$ must be a $5\times 1$ vector; the augmented matrix adds a column of zeros on the right side of this matrix) and so the matrix equation $A\vec{x}=\vec{0}$ yields the following system of equations: $$\left\{ \begin{array}{ll} x_1 + 21x_3 + \dfrac{164}{5}x_5 = 0 \\ x_2+2x_3+\dfrac{29}{5}x_5 = 0 \\ x_4 + \dfrac{1}{5}x_5 = 0 \end{array} \right.$$ whose solution is therefore $$\vec{x} = x_3 \begin{bmatrix} -21 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}+ x_5 \begin{bmatrix} \frac{164}{5} \\ \frac{29}{5} \\ 0 \\ -\frac{1}{5} \\ 1 \end{bmatrix}.$$ We see that there are two free variables in the solution of $A \vec{x}=\vec{0}$ and therefore $\mathrm{dim \hspace{2pt} \mathrm{Nul}} A = 2$. From the original matrix $A$ we see that there are three pivot columns, therefore $\mathrm{dim \hspace{2pt} \mathrm{Col}} A=3$.

#24, pg.229: The first three Laguerre polynomials are $L_0(x)=1, L_1(x)=-t+1,$ and $L_2(x)=t^2-4t+2$. It is known that $\mathscr{B}=\{L_0,L_1,L_2\}$ forms a basis of $\mathbb{P}_2$. Find the coordinate vector of the vector $\vec{p}(t)=-2t^2+5t+5$ with respect to $\mathscr{B}$, taking $b_0=L_0, b_1=L_1, b_2=L_2$.

Solution: Our goal here is to compute the column vector $[\vec{p}]_{\mathscr{B}}$. This is done by finding the weights $c_0,\ldots,c_3$ such that $$c_0 L_0 + c_1 L_1 + c_2 L_2 = \vec{p},$$ or in other words $$c_0 + c_1(-t+1) + c_2(t^2-4t+2)=-2t^2+5t+5.$$ Simplify the left hand side to get $$t^2 c_2 + t(-c_1 -4c_2) + (c_0 + c_1 +2c_2) = -2t^2 +5t + 5.$$ Equating coefficients yields $$\left\{ \begin{array}{ll} c_2 &= -2 \\ -c_1-4c_2 &= 5 \\ c_0+c_1+2c_2 &= 5 \end{array} \right.$$ yielding $$\left\{ \begin{array}{ll} c_2 &= -2 \\ c_1 &= 3 \\ c_0 &= 6. \end{array} \right.$$ Hence $$[\vec{p}]_{\mathbb{B}} = \begin{bmatrix} -2 \\ 3 \\ 6 \end{bmatrix}.$$