--| home | research | txt | img | code | teach | specialfunctionswiki | timescalewiki | hyperspacewiki | links |--
Back to the class
Quiz 2
1. If $T$ is a tautology, show that $P \wedge T \equiv P$.
Solution: It suffices to show that $(P \wedge T) \leftrightarrow P$ is a tautology. Compute $$\begin{array}{|l|l|l|l|l|} \hline P & T & P \wedge T & (P \wedge T) \leftrightarrow P \\ \hline 1&1&1&1 \\ 0&1&0&1 \\ \hline \end{array}$$

2. Show that $\neg (F \vee G) \equiv (\neg F) \wedge (\neg G)$.
Solution: It suffices to show that $\neg (F \vee G) \leftrightarrow ((\neg F) \wedge (\neg G))$ is a tautology. Compute $$\begin{array}{|l|l|l|l|l|l|l|} \hline F & G & \neg F & \neg G & F \vee G & \neg (F \vee G) & (\neg F) \wedge (\neg G) & (\neg (F \vee G)) \leftrightarrow ((\neg F) \wedge (\neg G))\\ \hline 1&1&0&0&1&0&0&1 \\ 1&0&0&1&1&0&0&1 \\ 0&1&1&0&1&0&0&1 \\ 0&0&1&1&0&1&1&1 \\ \hline \end{array}$$