AMPS | THARC | KE8QZC | SFW | TSW
ORCID iD icon

Back to the class
The following integral was encountered in class (I guessed the correct first step in class!): $$\displaystyle\int \csc(x) \mathrm{d}x.$$ We looked up in the book that the anti-derivative is $$\displaystyle\int \csc(x) \mathrm{d}x = -\ln(\cot(x)+\csc(x)) + C.$$
Derivation of this integral formula
We will rewrite $$\csc(x) = \dfrac{1}{\sin(x)} = \dfrac{\sin(x)}{\sin^2(x)},$$ and apply the Pythagorean identity $\sin^2(x)+\cos^2(x)=1$ rearranged to $\sin^2(x)=1-\cos^2(x)$ in the denominator to write $$\csc(x) = \dfrac{\sin(x)}{1-\cos^2(x)}.$$ If we use the $u$-substitution $u=\cos(x)$ hence $\mathrm{d}u=-\sin(x)\mathrm{dx}$ we get $$\displaystyle\int \csc(x) \mathrm{d}x = \displaystyle\int \dfrac{\sin(x)}{1-\cos^2(x)} \mathrm{d}x=-\displaystyle\int \dfrac{1}{1-u^2} \mathrm{d}u.$$ Notice the following algebraic fact (we will "find" this sort of thing when we do partial fraction decompositions in chapter 8): $$\dfrac{1}{u-1} - \dfrac{1}{u+1} = \dfrac{2}{u^2-1},$$ or in other words $$\dfrac{1}{2} \left[ \dfrac{1}{u-1} - \dfrac{1}{u+1} \right] = \dfrac{1}{u^2-1}.$$ Using that fact of algebra, we can finally complete the integral: $$\begin{array}{ll} \displaystyle\int \csc(x) \mathrm{d}x &= -\displaystyle\int \dfrac{1}{1-u^2} \mathrm{d}u \\ &= -\left[\dfrac{1}{2} \displaystyle\int \dfrac{1}{u-1} \mathrm{d}u - \dfrac{1}{2}\displaystyle\int \dfrac{1}{u+1} \mathrm{d}u \right] \\ &\stackrel{w=u-1,z=u+1}{=} -\left[ \dfrac{1}{2} \displaystyle\int \dfrac{1}{w} \mathrm{d}w - \dfrac{1}{2} \displaystyle\int \dfrac{1}{z} \mathrm{d}z \right] \\ &=-\left[\dfrac{1}{2}\ln(|w|) - \dfrac{1}{2} \ln(|z|) \right] +C \\ &= -\left[ \dfrac{1}{2}\ln(|u-1|) - \dfrac{1}{2} \ln(|u+1|) \right] + C \\ &= -\left[ \dfrac{1}{2} \ln(|\cos(x)-1|) - \dfrac{1}{2} \ln(|\cos(x)+1|)\right] + C \\ &=-\left[ \dfrac{1}{2} \ln \left( \left| \dfrac{\cos(x)-1}{\cos(x)+1} \right| \right) \right] + C \\ &= -\left[ \dfrac{1}{2} \ln \left( \left| \left( \dfrac{\cos(x)-1}{\cos(x)+1} \right)\left( \dfrac{\cos(x)-1}{\cos(x)-1} \right) \right| \right) \right] + C \\ &= -\left[ \dfrac{1}{2} \ln \left( \dfrac{(1-\cos(x))^2}{\cos^2(x)-1} \right) \right] + C \\ &= -\left[ \dfrac{1}{2} \ln \left( \left[ \dfrac{1-\cos(x)}{\sin(x)} \right]^2 \right) \right] + C\\ &= -\ln \left( \sqrt{ \left[ \dfrac{1-\cos(x)}{\sin(x)} \right]^2 } \right) + C \\ &= -\ln \left( \dfrac{1-\cos(x)}{\sin(x)} \right) + C \\ &= -\ln \left( \dfrac{1}{\sin(x)} - \dfrac{\cos(x)}{\sin(x)} \right) + C \\ &= -\ln(\csc(x) - \cot(x)) + C, \end{array}$$ as was to be shown.
The technique that would be used here to find $\dfrac{1}{u^2-1}=\dfrac{1}{u-1} - \dfrac{1}{u+1}$ is called partial fraction decomposition, and it is what was needed in the question from 20 January 2017 class.