AMPS | THARC | KE8QZC | SFW | TSW
ORCID iD icon

Back to the class
Problems B and F are graded.

Problem B: Find an eigenvector corresponding to the eigenvalue $\lambda=4$ of the matrix $$A=\begin{bmatrix} 3&0&-1 \\ 2&3&1 \\ -3&4&5 \end{bmatrix}.$$ Solution: We must find a vector $\vec{x}$ such that $A\vec{x}=4\vec{x},$ i.e. $$\begin{bmatrix} 3&0&-1 \\ 2&3&1 \\ -3&4&5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 4 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$ or in other words $$\begin{bmatrix} 3x_1 - x_3 \\ 2x_1+3x_2+x_3 \\ -3x_1+4x_2+5x_3 \end{bmatrix} = \begin{bmatrix} 4x_1 \\ 4x_2 \\ 4x_3 \end{bmatrix}.$$ Subtracting the right-hand-side from both sides of the equation yields $$\begin{bmatrix} -x_1-x_3 \\ 3x_1-x_2+x_3 \\ -3x_1 + 4x_2 + x_3 \end{bmatrix} = \vec{0},$$ yielding the system of equations $$\left\{ \begin{array}{ll} -x_1-x_3 &= 0 \\ 3x_1-x_2+x_3 &= 0 \\ -3x_1 + 4x_2 + x_3 &= 0. \end{array} \right.$$ The reduced echelon form of the assocaited augmented matrix is $$\begin{bmatrix} 1 & 0 & 1&0 \\ 0&1&1&0 \\ 0&0&0&0 \end{bmatrix}.$$ which is equivalent to the system $$\left\{ \begin{array}{ll} x_1 + x_3 &= 0 \\ x_2 + x_3 &= 0 \end{array} \right.$$ and so we see that $x_1=-x_3$ and $x_2=-x_3$ with free variable $x_3$. Thus we see that an eigenvector $\vec{x}$ is any vector of the form $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}.$$ So pick the simplest constant, $x_3=1$, to get an eigenvector $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

Problem F: Use integration by parts to calculate the antiderivative of $f(x)=\log(x)$. (Hint: use $u=\log x$ and $dv=1$. Also recall that $\dfrac{d}{dx} \log x = \dfrac{1}{x}$)
Solution: Using $u=\log x$ yields $du = \dfrac{1}{x} dx$ and using $dv = 1 dx$ yields $v=x$. Therefore by integration by parts, $$\displaystyle\int \log(x) dx = \displaystyle\int u dv = uv - \displaystyle\int v du = x\log x - \displaystyle\int 1 dx = x \log x - \displaystyle\int x \dfrac{1}{x} dx = x\log x - x + C,$$ where $C$ is a constant introduced when finding the anti-derivative of $-1$.