AMPS | THARC | KE8QZC | SFW | TSW
ORCID iD icon

Back to the class
Problem #6 from pg.115 and problem #2 from pg.121.

#6, pg.115: Determine if the following matrix is invertible or not: $$\left[ \begin{array}{lll} 1 & -3 & -6 \\ 0 & 4 & 3 \\ -3 & 6 & 0 \end{array} \right].$$ Solution: We compute the reduced echelon form $$\begin{array}{ll} \left[ \begin{array}{lll} 1 & -3 & -6 \\ 0 & 4 & 3 \\ -3 & 6 & 0 \end{array} \right] &\stackrel{r_2 \leftrightarrow r_3}{\sim} \left[ \begin{array}{lll} 1 & -3 & -6 \\ -3 & 6 & 0 \\ 0 & 4 & 3 \end{array} \right] \\ &\stackrel{r_2^*=r_2+3r_1}{\sim} \left[ \begin{array}{lll} 1 & -3 & -6 \\ 0 & -3 & -18 \\ 0 & 4 & 3 \end{array} \right] \\ &\stackrel{r_1^*=r_1-r_2}{\stackrel{r_3^*=r_3+\frac{4}{3}r_2}{\sim}} \left[ \begin{array}{lll} 1 & 0 & 12 \\ 0 & -3 & -18 \\ 0 & 0 & -21 \end{array} \right] \\ &\stackrel{r_1^* = r_1+\frac{12}{21}r_3}{\stackrel{r_2^*=r_2-\frac{18}{21}r_3}{\sim}} \left[ \begin{array}{lll} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -21 \end{array} \right] \\ &\stackrel{r_2^*=\frac{-1}{3}r_2}{\stackrel{r_3^*=\frac{-1}{21}r_3}{\sim}} \left[ \begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]. \end{array}$$ Hence we see by Theorem 8, pg.112 (a) and (b) that the given matrix is invertible.
Note: there are many ways to do this problem using the Invertible Matrix Theorem!

#2, pg.121: Compute the product of the following block matrices: $$\left[ \begin{array}{ll} E & 0 & \\ 0 & F \end{array} \right] \left[ \begin{array}{ll} P & Q \\ R & S \end{array} \right].$$ Solution: Compute as if it were normal matrix multiplication: $$\left[ \begin{array}{ll} E & 0 \\ 0 & F \end{array} \right] \left[ \begin{array}{ll} P & Q \\ R & S \end{array} \right] = \left[ \begin{array}{ll} EP & EQ \\ FR & FS \end{array} \right].$$