3 Suppose $f, g: [a, b] \rightarrow \mathbf{R}$ are bounded functions. Prove that

$$L(f, [a, b]) + L(g, [a, b]) \le L(f + g, [a, b])$$

and

3:42 PM

$$U(f + g, [a, b]) \le U(f, [a, b]) + U(g, [a, b]).$$

pf.: Let $f, g: [a,b] \longrightarrow \mathbb{R}$ be bdd facts. $\Longrightarrow (f+g): [a,b] \longrightarrow \mathbb{R}$ is a bdd fact.

From Real Analysis, for any set A SIR,

$$\sup_{x \in A} (f+g) \leq \sup_{x \in A} (f) + \sup_{x \in A} (g)$$
 and $\inf_{x \in A} (f+g) \geq \inf_{x \in A} (f) + \inf_{x \in A} (g)$.

By def. 1.3, the upper and lower Riemann sums over any partition P of [a,b] are defined as follows:

 $\mathcal{N}(h, P, [a,b]) = \sum_{j=1}^{n} (x_{j} - x_{j-1}) \sup_{|x_{j-1}, x_{j}|} h \text{ and } L(h, P, [a,b]) = \sum_{j=1}^{n} (x_{j} - x_{j-1}) \inf_{|x_{j-1}, x_{j}|} h, \text{ where } h: [a,b] \rightarrow \mathbb{R} \text{ is a bdd fact.} (**)$

Then, combining (*) and (*) and substituting h=f,g,(f+g) provides

$$U(f+g,P,[a,b]) \leq U(f,P,[a,b]) + U(g,P,[a,b])$$
 and

$$L(f+g,P,[a,b]) \geq L(f,P,[a,b]) + L(g,P,[a,b])$$
, for any partition P.

By def. 17, the upper and lower Riemann integrals are defined as follows:

 $U(h, [a,b]) = \inf_{A \in \mathcal{P}} U(h, P, [a,b])$ and $L(h, [a,b]) = \sup_{A \in \mathcal{P}} L(h, P, [a,b])$, where $h: [a,b] \rightarrow \mathbb{R}$ is a bold fact.

 \Rightarrow $U(h,[a,b]) \leq U(h,P,[a,b])$ and $L(h,[a,b]) \geq L(h,P,[a,b])$, for any partition P, and there hold for h=f,g,(f+g).

Let & 70 be arbitrary. It follows from the defs of infimum and supremum

that, for E70, there exist partitions P,P2,P3, and P4 of [a,b] s.t.

$$\mathcal{U}(f, P_1, [a_1b]) \stackrel{\leq}{=} \mathcal{U}(f, [a_1b]) + \frac{\varepsilon}{2}$$
 and $\mathcal{U}(g, P_2, [a_1b]) \stackrel{\leq}{=} \mathcal{U}(g, [a_1b]) + \frac{\varepsilon}{2}$.

Likewise,
$$L(f, P_3, [a,b])^2 L(f, [a,b]) - \frac{\varepsilon}{2}$$
 and $L(g, P_4, [a,b])^2 L(g, [a,b]) - \frac{\varepsilon}{2}$.

Let P=P,UP2UP3UP4. Then, by thm 1.5, since P,P2,P3,P4 SP,

$$U(f,P,[a,b]) \leq U(f,P_1,[a,b])$$
 and $U(g,P,[a,b]) \leq U(g,P_2,[a,b])$.

Similarly,
$$L(f,P,[a,b]) \ge L(f,P_s,[a,b])$$
 and $L(g,P,[a,b]) \ge L(g,P_4,[a,b])$.

Putting (*), (*), (*), and (*) all together yields

 $\mathcal{N}(f+g,[a_1b]) \leq \mathcal{N}(f+g,P,[a_1b]) \leq \frac{\mathcal{N}(f,P,[a_1b]) + \mathcal{N}(g,P,[a_1b])}{\mathcal{N}(g,P,[a_1b])} \leq \mathcal{N}(f,P,[a_1b]) + \mathcal{N}(g,P,[a_1b]) + \mathcal{N}(g,$

 $L(f+g, \lceil a,b \rceil) \geq L(f+g, \lceil P, \lceil a,b \rceil) \geq L(f, \lceil P, \lceil a,b \rceil) + L(g, \lceil P, \lceil a,b \rceil) \geq L(f, \lceil a,b \rceil) + L(g, \lceil a,$

Simplifying gives us $U(f+g, [a,b]) \leq U(f, [a,b]) + U(g, [a,b]) + \varepsilon$

and
$$L(f+g, [a,b]) \ge L(f, [a,b]) + L(g, [a,b]) - \varepsilon$$
, $\forall \varepsilon > 0$.

.. Since this holds for all E70, we conclude that

$$W(f+g, [a,b]) \leq W(f, [a,b]) + W(g, [a,b])$$
 and $L(f+g, [a,b]) \geq L(f, [a,b]) + L(g, [a,b])$.