

Figure 2.2

 I_1, I_2, \ldots as follows: Let a be some point of S, and $I_1 = [a, c]$. Divide I_1 at the midpoint (a + c)/2 into two congruent closed intervals. If (a + c)/2 is an upper bound for S, let I_2 be the left-hand interval, otherwise let I_2 be the right-hand interval. In general, suppose $m \ge 1$ and I_m has been defined. If the midpoint of I_m is an upper bound for S, let I_{m+1} be the left half of I_m , otherwise the right half. The archimedean property implies that for any $x \ge 0$, the sequence $[m^{-1}x]$ tends to 0 as $m \to \infty$. Since $0 \le 2^{-m} \le m^{-1}$, the sequence $[2^{-m}x]$ also tends to 0. Let x = 2(c - a). Now $I_1 \supset I_2 \supset \cdots$ and the length of I_m is $2^{-m}x$. By Theorem 2.3, $I_1 \cap I_2 \cap \cdots$ contains a single point x_0 . By the construction, $x_0 = \sup S$ (see Figure 2.2).

Infinite series

Formally, an infinite series is an expression written $\sum_{k=1}^{\infty} x_k$ or $x_1 + x_2 + \cdots$. To be more precise, with any sequence $[x_k]$ is associated another sequence $[s_m]$, where $s_m = x_1 + \cdots + x_m$ is called the *mth partial sum*. This pair of sequences defines an *infinite series*. If the sequence of partial sums has a limit s, then the series is *convergent* and s is its *sum*. This is denoted by $s = x_1 + x_2 + \cdots$. If the sequence of partial sums has no limit, then the series is *divergent*.

If $\mathbf{s} = \mathbf{x}_1 + \mathbf{x}_2 + \cdots$, $\mathbf{t} = \mathbf{y}_1 + \mathbf{y}_2 + \cdots$, then $\mathbf{s} + \mathbf{t} = (\mathbf{x}_1 + \mathbf{y}_1) + (\mathbf{x}_2 + \mathbf{y}_2) + \cdots$ and $c\mathbf{s} = (c\mathbf{x}_1) + (c\mathbf{x}_2) + \cdots$ for any scalar c. This follows from the definition and Proposition 2.6. Some further elementary properties are given in Problems 7(c) and 8.

PROBLEMS

In Problems 1 and 2 you may use the results of Problems 9 and 10.

- 1. Find the limit if it exists.
 - (a) $x_m = (2^m 2^{-m})/(3^m + 3^{-m}).$
 - (b) $x_m = \sin(m\pi/2)$.
 - (c) $x_m = \sin m\pi$.
 - (d) $x_m = ((m+1)/(m-1))^m$. [Hint: $(1+1/m)^m \to e$ as $m \to \infty$.]
 - (e) $x_m = ((m^2 + 1)/(m^2 1))^m$.
- 2. Find the limit if it exists, using Proposition 2.
 - (a) $(x_m, y_m) = ((1 + m)/(1 2m), 1/(1 + m)).$
 - (b) $(x_m, y_m) = (2^{-m}, 1 + m)$.
 - (c) $(x_m, y_m) = (1 2^{-m}, (m^2 + 3^m)/m!)$.

- 3. Show that a sequence $[\mathbf{x}_m]$ has at most one limit \mathbf{x}_0 . [Hint: If \mathbf{y}_0 were another limit, let $\varepsilon = |\mathbf{x}_0 \mathbf{y}_0|/2$.]
- **4.** (a) Let A be a closed set. Show that if $\mathbf{x}_m \in A$ for m = 1, 2, ... and $\mathbf{x}_0 = \lim_{m \to \infty} \mathbf{x}_m$, then $\mathbf{x}_0 \in A$.
 - (b) If A is not closed, show that there exists a sequence $[\mathbf{x}_m]$, with $\mathbf{x}_m \in A$ for $m = 1, 2, \ldots$, converging to a limit $\mathbf{x}_0 \notin A$.
- **5.** Show that if $\mathbf{x}_m \in A$ for every $m \ge l$ and $\mathbf{x}_0 = \lim_{m \to \infty} \mathbf{x}_m$, then $\mathbf{x}_0 \in \operatorname{cl} A$.
- 6. (a) Prove Proposition 2.6.
 - (b) Prove Proposition 2.7.
- 7. (Comparison tests.) Show that:
 - (a) If $0 \le x_m \le y_m$ for every $m \ge l$ and $y_m \to 0$ as $m \to \infty$, then $x_m \to 0$ as $m \to \infty$.
 - (b) If $[x_m]$, $[y_m]$ are nondecreasing sequences such that $x_m \le y_m$ for each m = 1, 2, ... and $y_m \to y$ as $m \to \infty$, then $[x_m]$ has a limit $x \le y$.
 - (c) If $0 \le x_m \le y_m$ for every m = 1, 2, ... and $t = y_1 + y_2 + ...$, then the series $x_1 + x_2 + ...$ converges with sum $s \le t$.
- 8. An infinite series $\mathbf{x}_1 + \mathbf{x}_2 + \cdots$ converges absolutely if the series of nonnegative numbers $|\mathbf{x}_1| + |\mathbf{x}_2| + \cdots$ converges. Prove that any absolutely convergent infinite series is convergent. [Hint: Show that the sequence $[\mathbf{s}_m]$ of partial sums is Cauchy.]
- 9. Show that if a > 0, then
 - (a) $\lim_{m \to \infty} a^{1/m} = 1$. (b) $\lim_{m \to \infty} a^m/m! = 0$.
 - (c) $\lim_{m\to\infty} (x_m)^{1/m} = 1$ provided $\lim_{m\to\infty} x_m = a$. [Hints: For part (a) reduce to the case 0 < a < 1. By Example 1, if b < 1 then $a \le b^m$ for only finitely many m. For part (b), compare with the sequence [c/m] for suitable c and suitable l in Problem 7(a).]
- 10. Let $x_0 = \lim_{m \to \infty} x_m$, $y_0 = \lim_{m \to \infty} y_m$, and assume that $y_m \neq 0$ for $m = 0, 1, 2, \ldots$ Show that $x_0/y_0 = \lim_{m \to \infty} x_m/y_m$. [Hint: By (c) of Proposition 2.6 it suffices to show that $y_0^{-1} = \lim_{m \to \infty} y_m^{-1}$.]
- 11. Show that $x_0 = y_0$ in Example 3.

2.4 Bolzano-Weierstrass theorem

Suppose that an infinite number of points lie in a box. It is intuitively reasonable that they cannot remain scattered but must accumulate at some points of the box. The purpose of the present section is to put this idea on a precise basis. We begin with definitions of the concepts of isolated point and accumulation point of a set $A \subset E^n$.

Definition. A point \mathbf{x}_0 is an *isolated point* of A if there exists a neighborhood U of \mathbf{x}_0 such that $A \cap U = {\mathbf{x}_0}$.

Definition. A point x_0 is an accumulation point of A if every neighborhood of x_0 contains an infinite number of points of A.

, 43

Let us consider the case when A is an infinite set. Then $A \subset A_1$ since each $A_m \subset A_1$. Since A_1 is bounded, A is bounded. Let \mathbf{x}_0 be an accumulation point of A. As in the proof of Corollary 1, we have $\mathbf{x}_0 \in A_1$ since A_1 is a closed set and $A \subset A_1$. For each $m = 1, 2, \dots, \mathbf{x}_0$ is also an accumulation point of the set $\{\mathbf{x}_m, \mathbf{x}_{m+1}, \dots\}$. Since this set is contained in A_m and A_m is closed, we get in the same way $\mathbf{x}_0 \in A_m$. Since this is true for each $m, \mathbf{x}_0 \in \bigcap_{m=1}^{\infty} A_m$. \square

Corollary 3 shows the existence of a point in any closed set A nearest a given point $\mathbf{x}_0 \notin A$.

Corollary 3. Let A be a closed, nonempty subset of E^n and $\mathbf{x}_0 \notin A$. Then there exists $\mathbf{x}_1 \in A$ such that $|\mathbf{x} - \mathbf{x}_0| \ge |\mathbf{x}_1 - \mathbf{x}_0|$ for all $\mathbf{x} \in A$.

PROOF. Let $S_r = \{x : |x - x_0| \le r\}$ denote the closed spherical *n*-ball with center x_0 and radius r. Let

$$d = \inf\{|\mathbf{x} - \mathbf{x}_0| : \mathbf{x} \in A\}$$

$$d_m = d + \frac{1}{m}, \quad m = 1, 2, \dots$$

$$A_m = A \cap S_{d_m}.$$

The sets A_1, A_2, \ldots satisfy the hypotheses of Corollary 2. Let $\mathbf{x}_1 \in \bigcap_{m=1}^{\infty} A_m$. Then $\mathbf{x}_1 \in A$ since each $A_m \subset A$. By definition of d, $|\mathbf{x}_1 - \mathbf{x}_0| \ge d$. Since $\mathbf{x}_1 \in A_m$, and $A_m \subset S_{d_m}$, $|\mathbf{x}_1 - \mathbf{x}_0| \le d + 1/m$ for each $m = 1, 2, \ldots$ Thus $|\mathbf{x}_1 - \mathbf{x}_0| = d$.

Note. The point x_1 in Corollary 3 need not be unique. However, x_1 is unique if A is also convex (Problem 3).

PROBLEMS

- 1. Find all accumulation points of A:
 - (a) $A = \{(-1)^m m(1+m)^{-1} : m = 1, 2, ...\}.$

(b)
$$A = \left\{ \left(\cos \frac{2m\pi}{5}, \sin \frac{2m\pi}{5} \right) : m = 1, 2, \ldots \right\}$$

(c)
$$A = \left\{ \left(\left(1 - \frac{1}{m} \right) \cos \frac{2m\pi}{5}, \left(1 - \frac{1}{m} \right) \sin \frac{2m\pi}{5} \right) : m = 1, 2, \ldots \right\}.$$

- (d) $A = \{(x, y) : (x^2 + y^2)(y^2 x^2 + 1) \le 0\}.$
- (e) $A = \{\cos m : m = 1, 2, \ldots\}.$
- 2. Prove Proposition 2.9.
- 3. Let A be a closed, convex, nonempty set, and $\mathbf{x}_0 \notin A$. Show that there is exactly one point $\mathbf{x}_1 \in A$ nearest \mathbf{x}_0 .

- **4.** A set A is called *dense in B* if every point of B is an accumulation point of A.
 - (a) Suppose that A has no isolated points. Show that A is dense in B if and only if $B \subset \operatorname{cl} A$.
 - (b) Suppose that A is dense in B and B is dense in C. Show that A is dense in C.
- 5. Let $C = [0, 1] (A_1 \cup A_2 \cup \cdots)$, where $A_1 = (\frac{1}{3}, \frac{2}{3})$, $A_2 = (\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9})$, $A_3 = (\frac{1}{27}, \frac{2}{27}) \cup \cdots \cup (\frac{25}{27}, \frac{26}{27})$, and A_j is the union of 2^{j-1} open intervals of length 3^{-j} chosen similarly (see Figure 2.4). [Note: C is called the Cantor set.]
 - (a) Show that C is a closed set.
 - (b) Show that C is dense in no open set.

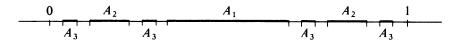


Figure 2.4

- **6.** (Subsequences.) Let $[\mathbf{x}_m]$ be a sequence, and $\mathbf{y}_l = \mathbf{x}_{m_l}$ for l = 1, 2, ..., where $m_1 < m_2 < ...$ Then $[\mathbf{y}_l]$ is called a subsequence of $[\mathbf{x}_m]$.
 - (a) Show that any bounded sequence in E^n has a convergent subsequence.
 - (b) A set S is called sequentially compact if: any bounded sequence $[\mathbf{x}_m]$, with $\mathbf{x}_m \in S$ for $m = 1, 2, \ldots$, has a subsequence $[\mathbf{y}_l]$ such that $\mathbf{y}_l \to \mathbf{y}_0$ as $l \to \infty$, $\mathbf{y}_0 \in S$. Show that a nonempty set $S \subset E^n$ is sequentially compact if and only if S is closed and bounded.
- 7. Let y be any frontier point of a closed convex set K. Show that K has a supporting hyperplane P that contains y. [Hint: Let $\{y_m\}$ be a sequence of points exterior to K such that y_m tends to y as $m \to \infty$. Let x_m be a point of K nearest to y_m and

$$\mathbf{u}_m = \frac{\mathbf{y}_m - \mathbf{x}_m}{|\mathbf{y}_m - \mathbf{x}_m|}.$$

Then $|\mathbf{u}_m| = 1$ and \mathbf{x}_m tends to \mathbf{y} as $m \to \infty$. By the proof of Theorem 1.1 there is a supporting hyperplane of the form $\{\mathbf{x} : \mathbf{u}_m \cdot (\mathbf{x} - \mathbf{x}_m) = 0\}$. Let \mathbf{u} be an accumulation point of the bounded set $\{\mathbf{u}_1, \mathbf{u}_2, \ldots\}$ and $P = \{\mathbf{x} : \mathbf{u} \cdot (\mathbf{x} - \mathbf{y}) = 0\}$.

2.5 Relative neighborhoods, continuous transformations

For the definition in Section 2.2 of a transformation continuous at a point x_0 , it is assumed that x_0 is interior to the domain D. However, we often wish to discuss continuity at points which are not interior to the domain. Moreover, even if the domain D is an open subset of E^n , we may be interested only in the restriction of the transformation to some set $S \subset D$.

We easily circumvent this apparent difficulty by introducing the idea of relative neighborhood.

Definition. Let S be a nonempty subset of E^n . A relative neighborhood of a point $x \in S$ is any set U such that $U = S \cap W$, where W is a neighborhood of x in E^n (Figure 2.5).

47

Next suppose that $\mathbf{f}(S)$ is not closed. Then there exists $\mathbf{y}_0 \in \operatorname{cl}[\mathbf{f}(S)] - \mathbf{f}(S)$. For $m = 1, 2, \ldots$ there exists $\mathbf{y}_m \in \mathbf{f}(S)$ such that $\mathbf{y}_m \to \mathbf{y}_0$ as $m \to \infty$. Choose $\mathbf{z}_m \in S$ with $\mathbf{y}_m = \mathbf{f}(\mathbf{z}_m)$. As before, the set $B = \{\mathbf{z}_1, \mathbf{z}_2, \ldots\}$ has an accumulation point $\mathbf{z}_0 \in S$. Since $\mathbf{y}_0 \notin \mathbf{f}(S)$, $\mathbf{y}_0 \neq \mathbf{f}(\mathbf{z}_0)$. Let V be a neighborhood of $\mathbf{f}(\mathbf{z}_0)$ of radius $\frac{1}{2}|\mathbf{f}(\mathbf{z}_0) - \mathbf{y}_0|$. Since \mathbf{f} is continuous at \mathbf{z}_0 , there exists a relative neighborhood U of \mathbf{z}_0 with $\mathbf{f}(U) \subset V$. In particular, $\mathbf{y}_m = \mathbf{f}(\mathbf{z}_m)$ is in V for infinitely many m for which $\mathbf{z}_m \in U$. This contradicts the fact that $\mathbf{y}_m \to \mathbf{y}_0$ as $m \to \infty$. Thus $\mathbf{f}(S)$ is closed.

If we specialize Theorem 2.4 to real valued functions, we get a theorem about the existence of maxima and minima.

Theorem 2.5. Let f be a real valued function continuous on a closed, bounded set S. Then there exist $\mathbf{x}_1, \mathbf{x}_2 \in S$ such that

$$f(\mathbf{x}_1) \le f(\mathbf{x}) \le f(\mathbf{x}_2)$$

for all $x \in S$.

PROOF. We recall that if $T \subset E^1$ is bounded and closed, then $y_1 = \inf T$ and $y_2 = \sup T$ are points of T (Example 4, Section 1.4). Let T = f(S). By Theorem 2.4, T is closed and bounded. Take \mathbf{x}_i such that $y_i = f(\mathbf{x}_i)$, i = 1, 2.

The function f is said to have a minimum on S at \mathbf{x}_1 and a maximum on S at \mathbf{x}_2 .

PROBLEMS

- 1. In each case show that f has a minimum on S, but no maximum on S. Which assumption in Theorem 2.5 is violated?
 - (a) $S = (0, 1], f(x) = x^{-1}$.

(b)
$$S = E^n, f(\mathbf{x}) = \frac{|\mathbf{x}|}{1 + |\mathbf{x}|}.$$

- 2. Given \mathbf{x}_0 , let $f(\mathbf{x}) = |\mathbf{x} \mathbf{x}_0|$. Show that f has a minimum on any closed, nonempty set $A \subset E^n$. (This gives another proof of Corollary 3, Section 2.4.)
- 3. Let $S = \lceil azb \rceil$.
 - (a) Show that the relative neighborhoods of a are the half open intervals [a, c) with a < c < b, and S.
 - (b) Let $a < x_0 < \frac{1}{2}(a+b)$. Show that the relative neighborhoods of x_0 are as follows: $(x_0 \delta, x_0 + \delta)$ if $0 < \delta < x_0 a$; $[a, x_0 + \delta)$ if $x_0 a \le \delta < b x_0$; S.
 - (c) Describe the relative neighborhoods in the remaining cases $\frac{1}{2}(a+b) \le x_0 \le b$.
- **4.** Define the projection π from E^n onto E^s as in Problem 7, Section 2.1.
 - (a) Show that $\pi(A)$ is closed and bounded if A is closed and bounded.
 - (b) Give an example of a closed set A such that $\pi(A)$ is not closed.

49

- 5. (a) Let f be continuous on S, and let $S_1 \subset S$. Show that the restriction $f | S_1$ is continuous on S_1 .
 - (b) Let f(x) = 1 x if $x \ge 0$ and f(x) = 0 if x < 0. Let $S_1 = [0, \infty)$, $S = E^1$. Show that $f | S_1$ is continuous, but f is not continuous at each point of S_1 .
- **6.** Let **f** be a transformation with domain S. Show that **f** is continuous at \mathbf{x}_0 if and only if $\mathbf{f}(\mathbf{x}_0) = \lim_{m \to \infty} \mathbf{f}(\mathbf{x}_m)$ for every sequence $[\mathbf{x}_m]$ such that $\mathbf{x}_m \in S$ for $m = 1, 2, \ldots$ and $\mathbf{x}_m \to \mathbf{x}_0$ as $m \to \infty$.
- 7. Let f be continuous on E^n . Suppose, moreover, that $f(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$, and that $f(c\mathbf{x}) = cf(\mathbf{x})$ for any \mathbf{x} and c > 0. Show that there exist a > 0 and b > 0 such that $a|\mathbf{x}| \leq f(\mathbf{x}) \leq b|\mathbf{x}|$. [Hint: First consider $\{\mathbf{x} : |\mathbf{x}| = 1\}$.]
- 8. (Uniform continuity.) A transformation \mathbf{f} is uniformly continuous on $S \subset E^n$ if given $\varepsilon > 0$ there exists $\delta > 0$ (depending only on ε) such that $|\mathbf{f}(\mathbf{x}) \mathbf{f}(\mathbf{y})| < \varepsilon$ for every $\mathbf{x}, \mathbf{y} \in S$ with $|\mathbf{x} \mathbf{y}| < \delta$. Show that if S is closed and bounded then every \mathbf{f} continuous on S is uniformly continuous on S. [Hint: If not, then there exists $\varepsilon > 0$ and for $m = 1, 2, ..., \mathbf{x}_m, \mathbf{y}_m \in S$ such that $|\mathbf{f}(\mathbf{x}_m) \mathbf{f}(\mathbf{y}_m)| \ge \varepsilon$ and $|\mathbf{x}_m \mathbf{y}_m| \le 1/m$. Let \mathbf{x}_0 be an accumulation point of $\{\mathbf{x}_1, \mathbf{x}_2, ...\}$. Show that the continuity of \mathbf{f} at \mathbf{x}_0 is contradicted.]

2.6 Topological spaces

In order to proceed further with the study of subsets of E^n and continuous transformations, it is convenient to introduce a very general concept—that of topological space. In this section S denotes a set, not necessarily a subset of E^n , and p denotes a point of S.

The notion of topological space occurs in practically all branches of mathematics. There are several equivalent definitions; of these, we give the one in terms of neighborhoods.

Definition. Let S be a nonempty set. For every $p \in S$ let \mathcal{U}_p be a collection of subsets of S called *neighborhoods* of p such that:

- (1) Every point p has at least one neighborhood.
- (2) Every neighborhood of p contains p.
- (3) If U_1 and U_2 are neighborhoods of p, then there is a neighborhood U_3 of p such that $U_3 \subset U_1 \cap U_2$.
- (4) If U is a neighborhood of p and $q \in U$, then there is a neighborhood V of q such that $V \subset U$.

Then S is a topological space.

More precisely, the topological space is S together with the collections \mathcal{U}_p of neighborhoods. However, it is common practice to omit explicit reference to the collections of neighborhoods when no ambiguity can arise.

For our purposes, the following two examples of topological spaces are of primary importance.