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1, 1,,... as follows: Let a be some point of S, and I, = [a, c]. Divide
I, at the midpoint (a + ¢)/2 into two congruent closed intervals. If (@ + ¢)/2
1s an upper bound for S, let I, be the left-hand interval, otherwise let I,
be the right-hand interval. In general, suppose m > 1 and I,, has been
defined. If the midpoint of I,, is an upper bound for S, let I, ; be the left half
of I,,, otherwise the right half. The archimedean property implies that for
any x > 0, the sequence [m~'x]tendstoOasm — 00.Since0 < 2™ " < m™ !,
the sequence [27™x] also tends to 0. Let x = 2(c —a). Now I, o I, o ---
and the length of I,,is 27 ™x. By Theorem 2.3, I, n I, N --- contains a single

point x,. By the construction, x, = sup S (see Figure 2.2).

Infinite series

Formally, an infinite series is an expression written » /- ; X, 0rx; + X, + -~

To be more precise, with any sequence [x,] is associated another sequence
[s..], where s,, = x; + --- + x,, is called the mth partial sum. This pair of
sequences defines an infinite series. If the sequence of partial sums has a
limit s, then the series is convergent and s is its sum. This is denoted by s =

X; + X, + --- . If the sequence of partial sums has no limit, then the series
is divergent.
If s=x;+x,+-, t=y, +y,+---, then s+t=(x; +y,)+

(x, +y;,) + - and ¢s = (cx,) + (cx;) + --- for any scalar ¢. This follows
from the definition and Proposition 2.6. Some further elementary properties
are given in Problems 7(c) and 8.

PROBLEMS

In Problems 1 and 2 you may use the results of Problems 9 and 10.

1. Find the limit if it exists.
@ x,=02"=2"")/3" +37").
(b) x,, = sin(mmn/2).
(¢) x, = sin mm.
d) x,, = ((m + 1)/m — 1))". [Hint: (1 + I/m)" > e as m —» 0.]
(€ X = ((m* + 1)/(m* — Dy

2. Find the limit if it exists, using Proposition 2.
(@) X, Y} = (1 + m)/(1 = 2m), 1/(1 + m)).
(®) (Xps Y) = 27", 1 + m).

(©) (Xms Vo) = (1 = 27", (m? + 37)/m!).
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10.

11.

2.4 Bolzano-Weierstrass theorem

. Show that a sequence [x,,] has at most one limit x,. [Hint: If y, were another

limit, let ¢ =[xy — ¥o!/2.]

. (a) Let 4 be a closed set. Show that if x,,€ 4 form = 1, 2,...and x, = lim,, .., X,

then x, € A.
(b) If A is not closed, show that there exists a sequence [x,,], with x,, € 4 for
m=1,2,..., converging to a limit x, ¢ A.

. Show that if x,, € A for every m > | and x, = lim,,, , X,,, then x, € cl A.

. (a) Prove Proposition 2.6.

(b) Prove Proposition 2.7.

. (Comparison tests.) Show that:

(@) If0 < x,, < y,, for everym > I and y,, —» 0 as m — oc, then x,, » 0 as m — cc.

(b) If[x,.], [y.] are nondecreasing sequences such that x,, < y,, foreachm = 1,2,...
and y,, —» y as m — o, then [x,,] has a limit x < y.

(c) HO0<x,<y,foreverym=1,2,...and t = y; + y, + ---, then the series
X, + x, + --- converges with sum s < ¢.

. An infinite series X, + X, +--- converges absolutely if the series of nonnegative

numbers |x, | + |X,| + --- converges. Prove that any absolutely convergent infinite
series is convergent. [ Hint: Show that the sequence [s,,] of partial sums is Cauchy.]

. Show that if a > 0, then

(@) lim,_, a'/™ = 1. (b) lim,,.., a"/m! = 0.

(¢) lim,,..(x,)"'™ = 1 provided lim,, ., x,, = a.

[Hints: For part (a) reduce to the case 0 < a < |. By Example 1, if b < | then
a < b™ for only finitely many m. For part (b), compare with the sequence [¢/m] for
suitable ¢ and suitable ! in Problem 7(a).]

Let xo = lim,, ., Xx,,, yo = lim,,_., Y., and assume that y,, # Oform=0,1,2,....
Show that x,/y, = lim,,_ . X,,/v,.. [Hint: By (c) of Proposition 2.6 it suffices to
show that y5 ! = lim,,_, y,'.]

Show that x, = y, in Example 3.

2.4 Bolzano—Weierstrass theorem

Suppose that an infinite number of points lie in a box. It is intuitively reason-
able that they cannot remain scattered but must accumulate at some points
of the box. The purpose of the present section is to put this idea on a precise
basis. We begin with definitions of the concepts of isolated point and accumu-
lation point of a set 4 < E".

Definition. A point X, is an isolated point of A if there exists a neighborhood

U of x, such that 4 N U = {x,}.

Definition. A point X, is an accumulation point of A if every neighborhood of

X, contains an infinite number of points of 4.
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2 Elementary topology of E”

Let us consider the case when A4 is an infinite set. Then A < A, since each
A, = A,. Since A, is bounded, A is bounded. Let x, be an accumulation
point of A. As in the proof of Corollary 1, we have x, € A, since A, is a closed
setand A =« 4,. Foreachm = 1,2,..., x, is also an accumulation point of
the set {x,,, X,,+1, - - -} Since this set is contained in A,, and 4,, is closed, we
get in the same way X, € 4,,. Since this is true for each m,xo € (\=_; 4,,. [

Corollary 3 shows the existence of a point in any closed set A nearest a
given point X, ¢ A.

Corollary 3. Let A be a closed, nonempty subset of E" and x, ¢ A. Then there
exists X; € A such that |x — x| = |x; — X, | for all x € A.

Proor.Let S, = {x:|x — x,| < r} denote the closed spherical n-ball with
center X, and radius r. Let

d = inf{|x — x,|:x € A}

d,,,=d+—1—, m=12,...
m

An=ANS,,.

The sets A,, A,, . .. satisfy the hypotheses of Corollary 2. Let x, € ()= A4,
Then x, € A since each A4,, = A. By definition of d, |x; — x| > d. Since
X, €A, and A, =S, ,|X; — Xo| <d + 1/m for each m = 1,2,.... Thus
IX; — Xo| = d. U

Note. The point x, in Corollary 3 need not be unique. However, x, is
unique if A4 is also convex (Problem 3).

PROBLEMS

1. Find all accumulation points of 4:
@ A={-1)m1+m':m=12...}

2 2
(b) A= {(cosin, sinﬂ):m =1, 2,...}. .
5 5
1 2m 1 2
(c) A= {((1 - —)cos ——n, <l - —)sin ﬂ):m =12.. }
m 5 m 5

(d) 4= {(x,y):(x*> + y)(»* — x> + 1) < 0}.
€ A={cosm:m=1,2,...}.

2. Prove Proposition 2.9.

3. Let A be a closed, convex, nonempty set, and X, ¢ A. Show that there is exactly one
point x; € A nearest X,.
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2.5 Relative neighborhoods, continuous transformations

4. A set A is called dense in B if every point of B is an accumulation point of 4.
(a) Suppose that 4 has no isolated points. Show that A4 is dense in B if and only if
B < cl A.
(b) Suppose that A is dense in B and B is dense in C. Show that A4 is dense in C.

5. Let C= [Oa 1] — (4, v A4, U ---), where A = (%9 %)a A, = (%’%)U(%s%)ﬂ A =
(5, F)U---U(33,%9), and A; is the union of 2! open intervals of length 37/
chosen similarly (see Figure 2.4). [Note: C is called the Cantor set.]

(a) Show that C is a closed set.
(b) Show that C is dense in no open set.

0 A, A, A, 1
T T 31 T T l/43l 1 A 11431 I 1 :431 T
Figure 2.4
6. (Subsequences.) Let [x,] be a sequence, and y, = x,, for I =1,2,..., where
m, < m, < ....Then [y,] is called a subsequence of [x,,].

(a) Show that any bounded sequence in E" has a convergent subsequence.
(b) A set S is called sequentially compact if: any bounded sequence [x,,], with x,, € S

form = 1,2,...,hasasubsequence [y,] such thaty, - y,as! — oc,y, € S. Show
that a nonempty set S < E" is sequentially compact if and only if S is closed and
bounded.

7. Let y be any frontier point of a closed convex set K. Show that K has a supporting
hyperplane P that contains y. [Hint: Let {y,,} be a sequence of points exterior to K
such that y,, tends to y as m — oo. Let x,, be a point of K nearest to y,, and

_ Y — Xp,
|ym - xmll
Then |u,,| = 1 and x,, tends to y as m — oo. By the proof of Theorem 1.1 there is a

supporting hyperplane of the form {x:u,,* (x — x,,) = 0}. Let u be an accumulation
point of the bounded set {u,,u,,...} and P = {x:u-(x — y) = 0}.]

um

2.5 Relative neighborhoods, continuous
transformations

For the definition in Section 2.2 of a transformation continuous at a point
Xy, it is assumed that x, is interior to the domain D. However, we often wish
to discuss continuity at points which are not interior to the domain. Moreover,
even if the domain D is an open subset of E", we may be interested only in the
restriction of the transformation to some set S = D.

We easily circumvent this apparent difficulty by introducing the idea of
relative neighborhood.

Definition. Let S be a nonempty subset of E". A relative neighborhood of a
point x € S is any set U such that U = § n W, where W is a neighborhood
of x in E" (Figure 2.5).
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2.5 Relative neighborhoods, continuous transformations

Next suppose that f(S) is not closed. Then there exists y, € cl[f(S)] — f(S).
Form = 1,2,... there exists y,, € f(S) such that y,, — y, as m —» oo. Choose
z, €S with y,, = f(z,). As before, the set B = {z,,z,,...} has an accumu-
lation point z, € S. Since y, ¢ f(S), yo # f(zo). Let V be a neighborhood of
f(z,) of radius %|f(z,) — y,!. Since fis continuous at z,, there exists a relative
neighborhood U of z, with f(U) = V. In particular, y,, = f(z,,) is in V for
infinitely many m for which z,, € U. This contradicts the fact that y,, — y, as
m — co. Thus f(S) is closed. O

If we specialize Theorem 2.4 to real valued functions, we get a theorem
about the existence of maxima and minima.

Theorem 2.5. Ler f be a real valued function continuous on a closed, bounded
set S. Then there exist X,, X, € S such that

f(xp) < f(x) < f(x2)
for all xe S.
ProOOE. We recall that if T = E' is bounded and closed, then y, = inf T and
y, = sup T are points of T (Example 4, Section 1.4). Let T = f(S). By

Theorem 2.4, T is closed and bounded. Take x; such that y; = f(x;),i = 1, 2.
O

The function fis said to have a minimum on S at x, and a maximum on S
at x,.

PROBLEMS

I. In each case show that f has a minimum on S, but no maximum on S. Which
assumption in Theorem 2.5 is violated ?
(a S=(0,1], f(x)=x"".

x|
1+ x|

(b) § = E" f(x) =

2. Given X, let f(x) = |x — Xo|. Show that f has a minimum on any closed, nonempty
set A < E". (This gives another proof of Corollary 3, Section 2.4.)

3. Let S = [azb].
(a) Show that the relative neighborhoods of a are the half open intervals [a, ¢) with
a<c<b,andS.
(b) Leta < xo < ¥a + b). Show that the relative neighborhoods of x, are as follows:
(xo — 0, x0 +0)iIf0<d<xy—a;[a,xo+d)ifxg—a<d<b-—x,;8S.
(c) Describe the relative neighborhoods in the remaining cases $(a + b) < x, < b.

4. Define the projection 7 from E" onto E° as in Problem 7, Section 2.1.
(a) Show that n(A) is closed and bounded if 4 is closed and bounded.
(b) Give an example of a closed set A such that n(A) is not closed.



2 Elementary topology of E"

5. (a) Let f be continuous on §, and let S; — S. Show that the restriction f|S, is
continuous on S;.
(b) Let f(x)=1—xif x>0 and f(x) =0 if x <O. Let S; = [0, ), § = E".
Show that f|S, is continuous, but f is not continuous at each point of S;.

6. Let f be a transformation with domain S. Show that f is continuous at x, if and only
if f(xo) = lim,,,, , f(x,,) for every sequence [x,,] such that x,,€ S form=1,2,...
and x,, — X, as m — .

7. Let f be continuous on E". Suppose, moreover, that f(x) > 0 for all x # 0, and that
f(cx) = ¢f (x) for any x and ¢ > 0. Show that there exist a > 0 and b > 0 such that
a|x| < f(x) < b|x|. [Hint: First consider {x:|x| = 1}.]

8. (Uniform continuity.) A transformation f is uniformly continuous on S < E" if given
¢ > 0 there exists 6 > 0 (depending only on ¢) such that |f(x) — f(y)| < ¢ for every
X,y € S with |x — y| < 4. Show that if S is closed and bounded then every f con-
tinuous on S is uniformly continuous on S. [Hint: If not, then there exists ¢ > 0
and form=1,2,...,X,,, ¥, € S such that |f(x,,) — f(y,)] = ¢and |x,, — ¥,,| < l/m.
Let x, be an accumulation point of {x, X,, ...}. Show that the continuity of f at
X is contradicted.]

2.6 Topological spaces

In order to proceed further with the study of subsets of E" and continuous
transformations, it is convenient to introduce a very general concept—that
of topological space. In this section S denotes a set, not necessarily a subset of
E", and p denotes a point of S.

The notion of topological space occurs in practically all branches of
mathematics. There are several equivalent definitions; of these, we give the
one in terms of neighborhoods.

Definition. Let S be a nonempty set. For every p € § let %, be a collection of
subsets of 3 called neighborhoods of p such that:

(1) Every point p has at least one neighborhood.

(2) Every neighborhood of p contains p.

(3) If U, and U, are neighborhoods of p, then there is a neighborhood
Usof psuchthat U; <« U, n U,.

(4) If U is a neighborhood of p and g € U, then there is a neighborhood
V of gsuch that V < U,

Then S is a topological space.

More precisely, the topological space is S together with the collections
%, of neighborhoods. However, it is common practice to omit explicit
reference to the collections of neighborhoods when no ambiguity can arise.

For our purposes, the following two examples of topological spaces are
of primary importance.
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