HW4 MTH 428/528 Spring 2025

Sunday, February 9, 2025 9:20 AM

1+2) Find that if it events
(a) the
$$(1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2})$$

 $= (\frac{1}{2} + \frac{1}{2} + \frac{1}{2})$
(b) the $(\frac{1}{2} + \frac{1}{2} + \frac{1}{2})$
(c) the $(\frac{1}{2} + \frac{1}{2} + \frac{1}{2})$
(c) the $(\frac{1}{2} + \frac{1}{2} + \frac{1}{2})$
 $= (\frac{1}{2} +$

$$\sum_{k=1}^{\infty} |X_k| \quad \text{conveges, which means the partial sums}$$

$$S_n = \sum_{k=1}^{n} |X_k| \quad \text{convege to sure limit } S_{\text{ive}}.$$

$$\forall E > 0 \exists N \forall n > N \quad |S - s_n| < E.$$

By The Z.Z (Couchy criterion) we know that the Sequence {sn3 is a carehy sequence, ive.

VEDO JNVN,MON (Sn-Sm < C.

Let
$$\varepsilon > 0$$
 and choose N so that $\forall n, m > 0$, $|S_n - S_m| < \varepsilon$.
Let $t_n = \sum_{k=1}^{n} x_k (t_k p \ i \ t_i d \ sums for \sum_{k=1}^{n} x_k)$.
Let $m_1 n > N$ (WLOG assume $n > m$)
 $|t_n - t_m| = \left|\sum_{k=1}^{n} x_k - \sum_{k=1}^{m} x_k\right|$
 $= \left|(x_1 + x_2 + \dots + x_n) - (x_1 + x_2 + \dots + x_m)\right|$
 $n > m$
 $= |x_{m+1} + x_{m+2} + \dots + x_n|$
 Δ -ineguality
 $\leq |x_{m+1}| + |x_{m+2}| + \dots + |x_n|$
 $= \left|\sum_{k=1}^{n} |x_k| - \sum_{k=1}^{m} |x_k|\right|$
 $= \left|\sum_{k=1}^{n} |x_k| - \sum_{k=1}^{m} |x_k|\right|$

This shows {tn} is a Cauchy sequence and so by Cauchy criterion, it converges, completing the proof.

$$\underbrace{\underbrace{5}_{2,2} \ddagger \ddagger 5(a)}_{f} [ot \ C be \ the \ \underline{Cantor set}}_{f} = C_1$$

$$A_1 = (\frac{1}{3}, \frac{2}{5}) \underbrace{\circ}_{f} = C_2 (rewrite "middle third")}_{f} = C_2 (rewrite "middle third")}$$

$$A_2 = (\frac{1}{9}, \frac{2}{9}) U(\frac{7}{9}, \frac{6}{9}) \underbrace{\circ}_{f} = C_3 (rewrite "middle third")}_{of ench prove of C_2})$$

$$Here \ C = \bigcap_{K=1}^{\infty} C_K$$

$$Show \ C is a \ dosed set.$$

Proof: Recall that an arbitrary union of
open sets is open: Ugy
Also recall the complement of an open set
is a closed set. So,
$$(Ugl_2)^c = \Pi gl_2^c$$
 is an
intersection of closed sets which is closed.
Since each C_k in the Cantar set is
a finite union of closed sets, each C_k
is closed. Thus C being an intersection
of closed sets, we get C is closed.

f real-valued fact on closed bodd sot S has a mox value and a min value

value
(a)
$$S = (0,1]$$
, $f(x) = \frac{1}{x}$
Solu : Here the minimum occurs
at x=1.
Thum 2.5 diver not apply because
the domain is not closed!
(b) $S = E^n$, $f(x) = \frac{||x||}{||t||x||}$
Solu : If $x = 0$, we see that $f(0) = 0$
must be the minimum because $f(x) \ge 0$ for all x
Thum 2.5 does not apply b/c the domain
of f is not bounded!

$$\begin{array}{l} \underbrace{ \left(\sum_{i=1}^{n} \sum_{i$$

then for any nubd 21 of x, xell and some point of A also lies in 21. Thus such xefriA),

hence $\chi \in c(A) = A \cup fr(A)$. Therefore, BC fr(A).

(←) Suppose BccllA). Let x∈B—we must argue that x is an accumulation point of A.

If x ∈ A, then since A contains no isolated points, x is an accumulation point of A. If x ∉ A, then since x ∈ cl(A) = Aufr(A), we conclude that x ∈ fr(A). So for each $e_i = \frac{1}{2i}$, i = 1, 2, 3, ...the open ball $B_i = \{z : ||x - z|| < e\}$ has nonempty interaction with A, say $y_i \in B_i \cap A$. Then for any open \mathcal{U} of x, since \mathcal{U} is open, we get that $\exists M$ sit. $\forall m > M$, $B_m \subset \mathcal{U}$. Thus $\{y_m, y_{m+1}, y_{m+2}, ...\}$ are ∞-many points of A in \mathcal{U} . Thus x is an accumulation point of A. So we showed A is dense in B.

(b) Suppose A is dense in B and B is dense in C. Show that A is dense in C.

<u>Proof</u>: Since A is dense in B, all points of B are accumulation points of A. Since B is dense in C, all points of C are accumulation points of B. We need to show all points of C are accumulation points of A. Let x e C and U be a nubbl of x. We know that QL contains infinitely many points of B, say {bijb2,...}. Since U is open Hi=1,2,3,... Jei sit. the ball centered of bi of redius Ei, Wi={willbi-will<Ei3 C U. Since each bi is an accumulation point of A, each Vi contains co-many points of A, and by construction all such points are elso in Q. So pick one such aieVi.

Then {a, cz, az, ... z is an infinite set of points of A lying in Q.

Thus, A is dense in C.

 $f(x) = |-x = |-\epsilon$

- XZ-E X=E

f(UIS,)

E 1)

 $1+\epsilon$

1-60

- e (e

QUNS,

(a) let f be continuous on S and let SICS. Show the restriction fls, is continuous on SI. Proof: let xES and let Y be a number of f(x).

Since f is continuous on S, J nhbd \mathcal{U} of x sit. $f(\mathcal{U}) \subset V$.

Fusther assume XES1.

The set $\mathcal{U}_{R} = \mathcal{U} \cap S_{1}$ is a relative number of χ and $f(\mathcal{U}_{R}) \subset V$, so f is continuous at χ .

Since x was arbitrary, we get that fls, is continuous.

ł

$$(b)(et f(x) = \begin{cases} 1-x, & x \in [0, \infty) \\ 0, & \chi \in (-\infty, 0) \end{cases}$$

Let $S_1 = [0, \infty), & S = 1R$

Show Fls, is continuous but fis not continuous at every point of SI.

Proof: fis not continuous at x=0 (clearly)

Let $x \in S_1 \setminus \{0\}$ and since polynomials are continuous, we get f ctn at x.

Now let x=0. let V be an open neighborhood of f(0)=1, say $V=\{w: \|w-1\| < \epsilon_{2}\}$. If $\epsilon \geq 1$, choose U=(-1,1), then $f(U\cap S_{1}) \subset V$. If $\epsilon < 1$, choose $Q=(-\epsilon,\epsilon)$, then $U\cap S_{1}=[0,\epsilon)$ and we see $f(U|S_{1}) \subset V$.

Therefore $f|_{S_1}$ is continuous even though f was not continuous at 0.