1 Euclidean spaces
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X,,...,X,arethe verticesofan n-simplex T,and all the barycentric coordinates
of x* are positive. Let T;, be the face of T opposite x,, and

K, = {x:x* =tx + (1 — t)y, wherey e T, and ¢ € [0, 1]}.

K, is a convex polytope, and its boundary fr K, consists of portions of the
hyperplanes which contain x* and the (» — 2)-dimensional faces of T, (we
leave the verification of this to the reader). If fr K, intersects S, then x* is
a convex combination of fewer than n + 1 points of S, contrary to hypothesis
(Figure 1.13). Hence S n fr K, is empty. The interior int K, and the comple-
ment K = E" — K, are open sets, their union contains S, and their inter-
section is empty. But x, € int K, and x; € K§ for i = 1,...,n. This implies
that S is disconnected, which is a contradiction. O

By slightly refining the proof, an even stronger result is obtained. Suppose
that S=S, u---uUS,, where Kk <n and S,,...,S, are connected sets.
Foreachi = 1,...,n consider the corresponding convex polytope K;. Then
int K; N int K; is empty whenever i # j and S N fr K; is empty for every i.
Moreover, x; € int K;. Since k < n, some pair of the points x;, X; must belong
to the same set S,. Then S, is not connected, a contradiction. Hence, if S is
the union of n or fewer connected sets, every x which is a convex combination
of points of S is a convex combination of n or fewer points of S.

PROBLEMS

1. Show that each of the following subsets of E? is closed and convex by writing it as
the intersection of closed half-planes:
(a) The regular hexagon with center (0, 0) and e, as one vertex.
b) {(x,y):y=>1Ix|, -1 <x <1}
(c) {(x,y):y <logx,x > 0}.
(d) {(x,y):0<y<sinx,0<x<m}.

2. Write the standard n-simplex as the intersection of n + 1 closed half-spaces.
lustrate forn = 2and n = 3.
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1.5 Convex sets

Write e, + }e, as a convex combination of e, $e, — e,. Also write it as a convex
combination of 0, e,, e, + e,. Illustrate.

Show that if x can be represented in two ways as a convex combination of
Xo, Xy, ..., X,, then x; — Xq,..., X, — Xo form a linearly dependent set. [Hint:
Ifx =% + -+ t'x,and t® + --- + " = 1, then x — Xy = t!}(x; — Xo) + - +
t"(x, — Xo).]

Prove that a supporting hyperplane for a closed convex set K can contain no
interior point of K.

Let K be any convex set. Prove that its interior and its closure are also convex sets.

. The barycenter of an r-simplex is the point at which the barycentric coordinates

areequal, t® =t' =... ="
(a) Show that the barycenter of a triangle is at the intersection of the medians.
(b) State and prove a corresponding result for r > 3.

Let x be a convex combination of xy, ..., x,, and let x; be a convex combination
of ¥;1,..++¥jm,»j = 1,..., m. Show that x is a convex combination of z,, ..., z,,
which are the distinct elements of the set {y, :k=1,...,m;,j=1,...,m}.

Let S be any subset of E". The set S of all convex combinations of points of S is the

convex hull of S.

(a) Using Problem 8, show that S is convex.

(b) Using Proposition 1.6, show that if K is convex and § < K, then § = K. Thus
the convex hull is the smallest convex set containing S.

Given x, and 6 >0, let C = {x:|x' — x{| <48, i=1,...,n}, an n-cube with
center X, and side length 25. The vertices of C are those x with |x' — x{| = 6 for
i=1,..., n.Show that C is the convex hull of its set of vertices. [ Hint : Use induction
onn.]

Let K be a closed subset of E" such that both K and its complement E" — K are
nonempty convex sets. Prove that K is a half-space.

Let A and B be convex subsets of E™. The join of A and B is the set of all x such that
x lies on a line segment with one endpoint in A and the other in B. Show that the
join of 4 and B is a convex set.



2 Elementary topology of E"

for every pe S. If ¢ is a constant function, ¢(p) = ¢ for every p € S, then we
write ¢f instead of ¢f.

Restriction of a function

Often one is interested only in the values of a function f for elements of
some subset 4 of its domain. The restriction of f to A is the function with
domain A and the same values as f there. It is denoted by f | A. Thus

f14 = {p. f(p):pe A}

For instance, if a real-valued function fis integrated over an interval I ¢ E 1
then it is only f |1 which is important. The values of f outside I do not affect
the integral.

Images, inverse images

Let f'be a function from a set S into a set T. The image under fofaset 4 = S
is the set f(4) = {f(p): pe A}. It is a subset of T, and in fact the restriction
f|A is a function from A4 onto f(A). The inverse image of a set B = T is the
set f ~Y(B) = {p: f(p) e B}. It is a subset of S.

ExampLE 1. Let f(x) = x2. Then f([—2,2]) = [0,4], f(E!) = [0, co0),
£7[1,3]) = [—+/3, —1] U [1,4/3]. The function f is not univalent since
f(=x) = f(x).

ExaMmPLE 2. Let f be a function from a set S into a set T. Show that

(*) A< fTHf(A)

for any 4 < S. Consider any p € A. Then f(p) € f(A) by definition of f(A).
Take B = f(A) in the definition of inverse image set above. Then
p€ fY(f(A)). Since this is true for each p € A, we get (*).

ExaMPLE 3. Show that if f is univalent in Example 2, then

(**) A= f7HSf(A)).

It suffices to show that 4 o f~!(f(A)), since the opposite inclusion is (*).
Consider any p € f ~!(f(A4)). Then f(p) € f(A). Therefore f(p) = f(p’) for
some p' € A. Since f'is univalent, p = p’. Thus p € A as required.

PROBLEMS

1. (a) Let f(x) = cos x. Find f(E"), f([— /4, 1/2]), f ~ ([0, 1]).
(b) Let g = f|[0, n]. Find g([0, 7]), g~ ([0, 1]). Is g univalent?

2. Theequationss = (x? 4+ y?)'/2,t = x — y define a transformation f from E? into EZ,
such that f(x, y) = (s, t). Let 4 = {(x, y): x*> + y*> < a?}, where a > 0 is given.
(a) Find f(A).
(b) Find f~1(A).
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2.2 Limits and continuity of transformations

3. Let f be a function from S into T. Show that, for any B < T:

(a) B> f(f ~'(B)).
(b) B= f(f " !(B)), if f is onto B.

4. Let f be a function from S into T. Show that, for any subsets 4 and B of S:
(@) f(4 v B) = f(4) v f(B).
(b) f(4 ~B) < f(4) n f(B).
(c) If f is univalent, then f(4 N B) = f(A4) n f(B).

5. Let f be a function from § into 7. Show that, for any subsets C and D of T:
(@) f~{(CuD)=fYC)u f~ (D).
(b) f7HC D)= f~HC)n f~HD).
(©) f7'D)=L1f D]

6. Let S and T be sets, and let n(p, g) = p for all pe S, g € T. The function & projects
S x Tonto S. Let R = § x T be a relation. Show that R is a function if and only if
7| R is univalent and onto S.

7. Let 1 <s<n— 1. Let usregard E" as the cartesian product E° x E"™° and write
x = (x, x"), where x' =(x!,...,x%, x"=(x"*!...,x"). Let m(x)=x' be the
projection of E" onto E°. Show that n(4) is an open subset of E* if A is an open subset
of E".

8. Let A < E*, B < E""°, and regard the cartesian product A x B as a subset of E",
as in Problem 7.
(a) Show that A x B is open if both 4 and B are open.
{b) Show that 4 x Bis closed if both A and B are closed.

2.2 Limits and continuity of transformations

Let us now suppose that f is a function from a set D < E” into E™, where n
and m are positive integers. As already mentioned, such functions are called
transformations in this book.

The definition of “limit” for transformations is patterned after the one
encountered in elementary calculus for real-valued functions of one variable.
A punctured neighborhood of x, is a neighborhood with the center x, re-
moved. Let us assume that D contains some punctured neighborhood of
Xo. For the definition of “limit,” x, itself need not be in D. If x4 € D, the
value of f at x; is irrelevant.

Definition. If for every neighborhood V of y, there is a punctured neighbor-
hood U of x,, such that f(U) < V, then y, is the /imit of the transformation
f at x, (Figure 2.1).

In the definition it is understood that the radius of U is small enough so
that U < D.Thenotationsy, = lim,_,,  f(x)and f(x) - y,asx — x, are used
to mean that y, is the limit of f at x,.
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2 Elementary topology of E"

It is shown in Theorem 2.7 that the composite of two continuous trans-
formations is continuous. In Section 4-4 it is shown that any differentiable
transformation is continuous. For a real valued function f of one variable,
differentiability of f at x, is equivalent to the existence of the derivative

f(xo).

Limits at o0

Let us call a set of the form {x :|x| > b} a punctured neighborhood of c. The
definition of “limit at co ” then reads: y, = lim,,,_, f(x)iffor every neighbor-
hood V of y, there exists a punctured neighborhood U of oo such that
flU)c V.

When f'is real valued we say that lim,_,, f(x) = + oo if for every C > 0
there is a punctured neighborhood U of x4 such that f(x) > C whenever
x € U. The definition of “lim,_,,, f(x) = —o0” is similar.

PROBLEMS

1. Find the limit at x, if it exists.
@) f(x,y) = xy/(x* + y’), o = €, + €.
(b) f(x, ) = xy/(x* + y?), Xo = (0, 0).
(©) f(x)=(1 — cos x)/x?, xo = 0. [Hint: lim,_,, (sin x)/x = 1.]
(d) f(x) = Ix - 2|el + |X + 2|e2,xO = 3.
(€) f(x,y) = ye, + (xy)*/[(xy)* + (x — y)*Jez, Xo = (0, 0).
At which points is each of these functions continuous?

2. Prove (2) of Proposition 2.1.

3. Show that if'y, = lim,_, f(x), then |y,| = lim,_,, |f(x)|. Prove that the converse
holds if y, = 0.

4. Let f(x) = | x|% where a > 0. Show that f is continuous at x, = 0 directly from the
definition of continuous function.

5. Let f(x, y) = x cos(y™ ') if y # 0, and f(x, 0) = 0. At which points is f continuous?
6. Find the limit if it exists.

4 4 2
x7 + . X
y b) lim —— .
x. 50,00 X"t

(@ hm

2 2"
xo-0,00 X" Ty

(x*x)(x*x;)

, where x, and x, are given vectors not 0.
XX

© lim
Ix|— o0
@ lim X=X

x| = |X - x2|.

7. (a) Letg(x) = |f(x)|* wherea > 0. Suppose that f is continuous at x, and f(x,) = 0.
Show that g is continuous at X;.
(b) Use (a) and Problem 3 to give another proof that the function in Example 3 is
continuous at (0, 0).
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2.3 Sequences in E"

8. Let yo = lim, .., f(X), zo = lim,_,,, g(x). Show that if z, # 0 then

lim L% _ Yo,
X—Xq g(X) Zo

9. Show that lim,..,, f(x) = + co if and only if lim,.,,[f(x)]"' =0 and f(x) > 0
for every x in some punctured neighborhood of x,.

10. Prove Proposition 2.2 in two different ways. [ Hints: For one proof use the definition
of limit directly and the inequality, for any vector h = (h', ..., h"),

|K| < |h] < /n(|h!] + - + |[B"]).

Take h = f(x) — y,. For the other proof, write f = f'e; + --- + f"e, and note
that f(x)- e, = fi(x).]

2.3 Sequences in E”

An infinite sequence is a function whose domain is the set of positive integers.
For brevity, we use the term “sequence” to mean infinite sequence. In this
section let us consider sequences with values in E". It is customary to denote
by x,, the value of the function at the integer m = 1,2,..., and to call x,, the
mth term of the sequence. The sequence itself is denoted by x, x,, ..., or for
brevity by [x,,]. It must not be confused with the set {x,, X, ...} whose ele-
ments are the terms of the sequence. This set may be finite or infinite. For
instance if x, = (—1)" then the sequence is —1, 1, —1,..., and the set
{x;,X5,...} has only two elements — 1 and 1.

Definition. Suppose that for every ¢ > 0 there exists a positive integer N
such that |x,, — xo| < ¢ for every m > N. Then x, is the limit of the
sequence [x,,].

The notations “x, = lim,,_, Xx,,” and “x,, > X, as m — 00~ are used to
mean that x, is the limit of the sequence [x,,]. A sequence is called convergent
if it has a limit, otherwise divergent. The integer N in the definition depends of
course on & Given ¢ there is a smallest possible choice for N. However, for
purposes of the theory of limits it is of no interest to calculate it. What matters
is the fact that some N exists.

Proposition 2.6. Let x, = lim,,, ,, X, Yo = lim,, o ¥,,. Then:
(a) Xo + Yo = limm—'oo(xm + ym)~
(b) cxo = lim,,-, ,, cX,, for any scalar c.

(C) Xo*Yo = lirnm—'oo Xn*Ym-

Let x!, denote the ith component of the vector x,,.



