1.2 Euclidean E"

Taking the inner product of each side with v; and using the formulav; - v; =

o

ij

we obtain

x-v;, =c.

The coefficients ¢’ (1.6) are just the components of x with respect to the
orthonormal basis vectors.

PROBLEMS

1.

Letn=4,x=e1 —ez+284=(1,—1,0,2),y=3el—92+e3+e4=(3,—1, 1,1).
Find x+y, x—y, |x+yl|, |Ix=yl, |x], |yl, x-y. Verify (1.1) and (1.2) in this
example.

. Prove that the standard euclidean inner product in E" has the following four

properties:
@ x'y=y-'x by x+y)z=xz+yz
) (ex)'y = c(x*y). - (d x*x>0 if x#0.

. Using Problem 2, show that

WH+cex)'(y+dz)=w'y+cx'y+dwz+ cdx-z

. Show that Y 7_, |x'| < ﬁlxl, for any x = (x!, ..., x"). [Hint: First suppose that

x' > 0. Use Equation (1.1) with y' = 1.]

. Show that 2|x|? + 2|y|?> = |x + y|?> + |x — y|%. What does this say about

parallelograms (see Figure 1.3)?

Figure 1.3

. Show that |x + y||x — y] < |x|? + |y|? with equality if and only if x*y = 0.

What does this say about parallelograms?

. Prove (1.3), using (1.2) and induction on m.

. Letn =4, and

vl = %(3el + 493)’
vy = 3(de, — 3ey),
v, = (/2/10)(—4e, + 3¢, + 3e; + de,).

Show that v,, v,, v; are mutually orthogonal unit vectors. Find a unit vector v,
such that v,, v,. v3, v, form an orthonormal basis for E*.
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9. Let {v,,...,v,} be an orthonormal basis for E", and let

10.

1.

C={x:x = Yv,0<t <1 for i= 1,...,n}.
i=1

The set C is an n-cube. If each t' = 0 or 1, x is called a vertex of C. What are the

possible distances between vertices of C?

(Gram-Schmidt process.) Let {x,...,x,} be a basis for E". Let v, = |x,| 'x,,
Y2 =%, — (X2 ViVi, Vo =¥l Ty, ¥a = X3 — (X3t Vv, — (X530 V)V, V3 =
l¥3l " 'y3.- .-y ¥y = |¥al ~'y,. Show that {v,,...,v,} is an orthonormal basis for E".

Let ¥~ be a vector subspace of E", of dimension k; and consider its orthogonal
complement

¥vit={y:y'x=0 forall xev}.

(a) Find an orthonormal basis {v,, ..., v,} for E", such that {v,,...,v,} is a basis
for " and {v,.,...,v,} is a basis for ¥"*. [Hint: Apply Problem 10 to a basis
{Xi,...,X,} such that {x,..., x,} is a basis for ¥".]

(b) Show that each x € E" can be written in one and only one way as x =y + z
withye ¥ andze v*.

1.3 Elementary geometry of E”

Such concepts as lines, planes, circles, and spheres in E? or E3 have analogs

in

E" for any dimension n. Let us begin with the concept of line in E".

Definition. Let x,, x, € E" with x; # x,. The line through x, and x, is

X

{x:x =tx,; + (1 — 1)x,, t any scalar}.
If we set z = x, — X,, then this can be rewritten as
{x:X = X, + tz, t any scalar}.
In the plane E? the vector equation x = X, + tz becomes
X =X + t(x; — Xx3), y =y + 1ty — y2)

which, in elementary analytic geometry, are called “ parametric equations”
of the line through (x,, y,) and (x,, y,).
The line segment joining x, and x, is

{x:x =tx; + (1 — t)x,,t [0, 1]},

where [a, b] denotes the set of real numbers r such that a < t < b (Section
1.1).

For example, if t = 4, then x is the midpoint of the line segment joining
and x, (Figure 1.4). The points corresponding to t = J, 5 trisect the line

segment.
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PROBLEMS

1. Let n = 3. Find the plane that contains the three points e,, e,, and e; — 3e,.
Sketch its intersection with the first octant in E>.

2. (a) Find the hyperplane in E* containing the four points 0, ¢, + e,,¢e, — e, +2e;,
384 - ez .
(b) Find the value of 7 for which t(e, — e,) + (1 — t)e, is in this hyperplane.

3. Let I denote the line in E* through e, — ey and —e, + e, + 2e,. Find the hyper-
plane P through e, — e; to which / is perpendicular.

4. Let ¥ = {(x,y,2):2x + 3y — z = 0}. Show that ¥ is a 2-dimensional vector
subspace of E*, and find a basis for ¥". (¥" is a vector subspace of E"if X, y € ¥ imply
X + y € ¥ and cx € ¥ for any scalar ¢.)

5. Let¥ = {x:z*x = 0},wherez # 0is given. Show that ¥"isan (n -- 1)-dimensional
vector subspace of E”, and find a basis for ¥,

6. Show that {x:|x — x,| = |x — x,|}, where x, and x, are given points in E", is a
hyperplane.

7. Show that {x:|x — x| = ¢|x — x,]|}, where x, and x, are given points in E" and
0 <c < l,isan (n — 1)-sphere.

8. Letxq, Xy, ..., X, besuch that x; — x,,..., X,_; — X, are linearly independent.
Prove that there is exactly one hyperplane containing xq, X, ..., X, ;.

9. A set P={x:z;*x=¢; for i=1,....n— k}, where z,,...,z,_, are linearly
independent vectors, is called a k-plane in E". Let X4, X,,...,X, be such that
X; — Xg,..., X, — Xq are linearly independent. Prove that there is exactly one
k-plane containing X, X, ..., X;.

10. Prove that any line in E" is a convex set.

11. Show that K is a convex set by directly applying the definition. Sketch K in the
casesn = 1,2, 3.
(@) K={x:|x"]+ -+ |x"| < 1}
b)) K={x=cvy + - +cV,,0<c <1 fori=1,...,n}, where {v,,...,v,}
is a basis for E". This is the n-parallelepiped spanned by v,, ..., v, with 0 as a
vertex.

12. Let P be a hyperplane. Prove that the line through any two points of P is contained
in P. Why does this imply that P is a convex set?

1.4 Basic topological notions in E”"

We now introduce some basic concepts that are essential to a careful treat-
ment of several-variable calculus. These concepts are developed further in
Chapter 2.

Let us begin by making precise the idea of being “strictly inside” a set A4,
“strictly outside” A, or neither. Points with these properties will be called,
respectively, interior, exterior, or frontier points. We first define the concept
of neighborhood.
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