Taking the inner product of each side with \mathbf{v}_i and using the formula $\mathbf{v}_i \cdot \mathbf{v}_j = \delta_{ij}$, we obtain

$$\mathbf{x} \cdot \mathbf{v}_i = c^i$$
.

The coefficients c^{i} (1.6) are just the components of x with respect to the orthonormal basis vectors.

PROBLEMS

- 1. Let n = 4, $\mathbf{x} = \mathbf{e}_1 \mathbf{e}_2 + 2\mathbf{e}_4 = (1, -1, 0, 2)$, $\mathbf{y} = 3\mathbf{e}_1 \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4 = (3, -1, 1, 1)$. Find $\mathbf{x} + \mathbf{y}$, $\mathbf{x} \mathbf{y}$, $|\mathbf{x} + \mathbf{y}|$, $|\mathbf{x} \mathbf{y}|$, $|\mathbf{x}|$, $|\mathbf{y}|$, $|\mathbf{x} \cdot \mathbf{y}|$. Verify (1.1) and (1.2) in this example.
- 2. Prove that the standard euclidean inner product in E^n has the following four properties:
 - (a) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$.

- (b) $(x + y) \cdot z = x \cdot z + y \cdot z$.
- (c) $(c\mathbf{x}) \cdot \mathbf{y} = c(\mathbf{x} \cdot \mathbf{y})$.
- (d) $\mathbf{x} \cdot \mathbf{x} > 0$ if $\mathbf{x} \neq \mathbf{0}$.
- 3. Using Problem 2, show that

$$(\mathbf{w} + c\mathbf{x}) \cdot (\mathbf{y} + d\mathbf{z}) = \mathbf{w} \cdot \mathbf{y} + c\mathbf{x} \cdot \mathbf{y} + d\mathbf{w} \cdot \mathbf{z} + cd\mathbf{x} \cdot \mathbf{z}.$$

- **4.** Show that $\sum_{i=1}^{n} |x^i| \le \sqrt{n} |\mathbf{x}|$, for any $\mathbf{x} = (x^1, \dots, x^n)$. [Hint: First suppose that $x^i \ge 0$. Use Equation (1.1) with $y^i = 1$.]
- 5. Show that $2|\mathbf{x}|^2 + 2|\mathbf{y}|^2 = |\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} \mathbf{y}|^2$. What does this say about parallelograms (see Figure 1.3)?

Figure 1.3

- 6. Show that $|\mathbf{x} + \mathbf{y}| |\mathbf{x} \mathbf{y}| \le |\mathbf{x}|^2 + |\mathbf{y}|^2$ with equality if and only if $\mathbf{x} \cdot \mathbf{y} = 0$. What does this say about parallelograms?
- 7. Prove (1.3), using (1.2) and induction on m.
- **8.** Let n = 4, and

$$\mathbf{v}_1 = \frac{1}{5}(3\mathbf{e}_1 + 4\mathbf{e}_3),$$

$$\mathbf{v}_2 = \frac{1}{5}(4\mathbf{e}_2 - 3\mathbf{e}_4),$$

$$\mathbf{v}_3 = (\sqrt{2}/10)(-4\mathbf{e}_1 + 3\mathbf{e}_2 + 3\mathbf{e}_3 + 4\mathbf{e}_4).$$

Show that v_1 , v_2 , v_3 are mutually orthogonal unit vectors. Find a unit vector v_4 such that v_1 , v_2 , v_3 , v_4 form an orthonormal basis for E^4 .

9

9. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be an orthonormal basis for E^n , and let

$$C = \left\{ \mathbf{x} : \mathbf{x} = \sum_{i=1}^{n} t^{i} \mathbf{v}_{i}, 0 \le t^{i} \le 1 \quad \text{for} \quad i = 1, \dots, n \right\}.$$

The set C is an *n*-cube. If each $t^i = 0$ or 1, **x** is called a *vertex* of C. What are the possible distances between vertices of C?

- **10.** (Gram-Schmidt process.) Let $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be a basis for E^n . Let $\mathbf{v}_1 = |\mathbf{x}_1|^{-1}\mathbf{x}_1$, $\mathbf{y}_2 = \mathbf{x}_2 (\mathbf{x}_2 \cdot \mathbf{v}_1)\mathbf{v}_1$, $\mathbf{v}_2 = |\mathbf{y}_2|^{-1}\mathbf{y}_2$, $\mathbf{y}_3 = \mathbf{x}_3 (\mathbf{x}_3 \cdot \mathbf{v}_1)\mathbf{v}_1 (\mathbf{x}_3 \cdot \mathbf{v}_2)\mathbf{v}_2$, $\mathbf{v}_3 = |\mathbf{y}_3|^{-1}\mathbf{y}_3, \dots, \mathbf{v}_n = |\mathbf{y}_n|^{-1}\mathbf{y}_n$. Show that $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthonormal basis for E^n .
- 11. Let \mathscr{V} be a vector subspace of E^n , of dimension k; and consider its orthogonal complement

$$\mathscr{V}^{\perp} = \{ \mathbf{y} : \mathbf{y} \cdot \mathbf{x} = 0 \text{ for all } \mathbf{x} \in \mathscr{V} \}.$$

- (a) Find an orthonormal basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for E^n , such that $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis for \mathscr{V} and $\{\mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ is a basis for \mathscr{V}^{\perp} . [Hint: Apply Problem 10 to a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ such that $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ is a basis for \mathscr{V} .]
- (b) Show that each $x \in E^n$ can be written in one and only one way as x = y + z with $y \in \mathcal{Y}$ and $z \in \mathcal{Y}^{\perp}$.

1.3 Elementary geometry of E^n

Such concepts as lines, planes, circles, and spheres in E^2 or E^3 have analogs in E^n for any dimension n. Let us begin with the concept of line in E^n .

Definition. Let $x_1, x_2 \in E^n$ with $x_1 \neq x_2$. The *line* through x_1 and x_2 is

$$\{\mathbf{x}: \mathbf{x} = t\mathbf{x}_1 + (1-t)\mathbf{x}_2, t \text{ any scalar}\}.$$

If we set $z = x_1 - x_2$, then this can be rewritten as

$$\{\mathbf{x}: \mathbf{x} = \mathbf{x}_2 + t\mathbf{z}, t \text{ any scalar}\}.$$

In the plane E^2 the vector equation $\mathbf{x} = \mathbf{x}_2 + t\mathbf{z}$ becomes

$$x = x_2 + t(x_1 - x_2),$$
 $y = y_2 + t(y_1 - y_2),$

which, in elementary analytic geometry, are called "parametric equations" of the line through (x_1, y_1) and (x_2, y_2) .

The line segment joining x_1 and x_2 is

$$\{\mathbf{x}: \mathbf{x} = t\mathbf{x}_1 + (1-t)\mathbf{x}_2, t \in [0,1]\},\$$

where [a, b] denotes the set of real numbers t such that $a \le t \le b$ (Section 1.1).

For example, if $t = \frac{1}{2}$, then x is the midpoint of the line segment joining x_1 and x_2 (Figure 1.4). The points corresponding to $t = \frac{1}{3}, \frac{2}{3}$ trisect the line segment.

PROBLEMS

- 1. Let n = 3. Find the plane that contains the three points e_1 , e_2 , and $e_3 3e_1$. Sketch its intersection with the first octant in E^3 .
- 2. (a) Find the hyperplane in E^4 containing the four points $\mathbf{0}$, $\mathbf{e}_1 + \mathbf{e}_2$, $\mathbf{e}_1 \mathbf{e}_2 + 2\mathbf{e}_3$, $3\mathbf{e}_4 \mathbf{e}_2$.
 - (b) Find the value of t for which $t(\mathbf{e}_1 \mathbf{e}_2) + (1 t)\mathbf{e}_4$ is in this hyperplane.
- 3. Let l denote the line in E^4 through $\mathbf{e}_1 \mathbf{e}_3$ and $-\mathbf{e}_1 + \mathbf{e}_2 + 2\mathbf{e}_4$. Find the hyperplane P through $\mathbf{e}_1 \mathbf{e}_3$ to which l is perpendicular.
- **4.** Let $\mathscr{V} = \{(x, y, z) : 2x + 3y z = 0\}$. Show that \mathscr{V} is a 2-dimensional vector subspace of E^3 , and find a basis for \mathscr{V} . (\mathscr{V} is a vector subspace of E^n if $\mathbf{x}, \mathbf{y} \in \mathscr{V}$ imply $\mathbf{x} + \mathbf{y} \in \mathscr{V}$ and $c\mathbf{x} \in \mathscr{V}$ for any scalar c.)
- 5. Let $\mathscr{V} = \{\mathbf{x} : \mathbf{z} \cdot \mathbf{x} = 0\}$, where $\mathbf{z} \neq \mathbf{0}$ is given. Show that \mathscr{V} is an (n 1)-dimensional vector subspace of E^n , and find a basis for \mathscr{V} .
- 6. Show that $\{x: |x x_1| = |x x_2|\}$, where x_1 and x_2 are given points in E^n , is a hyperplane.
- 7. Show that $\{\mathbf{x}: |\mathbf{x} \mathbf{x}_1| = c|\mathbf{x} \mathbf{x}_2|\}$, where \mathbf{x}_1 and \mathbf{x}_2 are given points in E^n and 0 < c < 1, is an (n 1)-sphere.
- 8. Let $x_0, x_1, \ldots, x_{n-1}$ be such that $x_1 x_0, \ldots, x_{n-1} x_0$ are linearly independent. Prove that there is exactly one hyperplane containing $x_0, x_1, \ldots, x_{n-1}$.
- 9. A set $P = \{\mathbf{x} : \mathbf{z}_i \cdot \mathbf{x} = c_i \text{ for } i = 1, ..., n k\}$, where $\mathbf{z}_1, ..., \mathbf{z}_{n-k}$ are linearly independent vectors, is called a k-plane in E^n . Let $\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_k$ be such that $\mathbf{x}_1 \mathbf{x}_0, ..., \mathbf{x}_k \mathbf{x}_0$ are linearly independent. Prove that there is exactly one k-plane containing $\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_k$.
- 10. Prove that any line in E^n is a convex set.
- 11. Show that K is a convex set by directly applying the definition. Sketch K in the cases n = 1, 2, 3.
 - (a) $K = \{x : |x^1| + \cdots + |x^n| \le 1\}.$
 - (b) $K = \{\mathbf{x} = c^1 \mathbf{v}_1 + \dots + c^n \mathbf{v}_n, \ 0 \le c^i \le 1 \text{ for } i = 1, \dots, n\}, \text{ where } \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for E^n . This is the *n*-parallelepiped spanned by $\mathbf{v}_1, \dots, \mathbf{v}_n$ with $\mathbf{0}$ as a vertex.
- 12. Let P be a hyperplane. Prove that the line through any two points of P is contained in P. Why does this imply that P is a convex set?

1.4 Basic topological notions in E^n

We now introduce some basic concepts that are essential to a careful treatment of several-variable calculus. These concepts are developed further in Chapter 2.

Let us begin by making precise the idea of being "strictly inside" a set A, "strictly outside" A, or neither. Points with these properties will be called, respectively, interior, exterior, or frontier points. We first define the concept of neighborhood.