and lower Riemann integrals by $\bar{S}(f)$ and $\underline{S}(f)$. Then

(5.19)
$$\underline{S}(f) \le \int f \, dV \le \overline{S}(f).$$

If $\underline{S}(f) = \overline{S}(f)$, then f is called Riemann integrable. Their common value S(f) is the Riemann integral of f. From (5.19), if f is Riemann integrable, then f is integrable [in the sense of (5.16)] and

$$(5.20) S(f) = \int f \, dV.$$

It can be proved that a bounded function f with compact support is Riemann integrable if and only if $V(\{x:f \text{ is discontinuous at } x\}) = 0$ [1, pp. 230 and 260].

PROBLEMS

- 1. Determine whether f is bounded. Find its support.
 - (a) f(x) = x |x|.
 - (b) $f(x, y) = x \exp(-x^2 y^2)$.
 - (c) f(x, y) = 1 if either x or y is a rational number, f(x, y) = 0 if both x and y are irrational.
 - (d) f(x, y) = (x y)|x + y| (x + y)|x y| if |x| + |y| < 1, f(x, y) = 0 if $|x| + |y| \ge 1$. Illustrate with a sketch.
- 2. Let [a] denote the largest integer which is no greater than a (for instance, $[\pi] = 3$). Let $\phi(x, y) = [x + y]$ if $0 \le x < r, 0 \le y < s$, where r and s are positive integers. For all other (x, y) let $\phi(x, y) = 0$. Show that

$$\int \phi \ dV_2 = \frac{rs(r+s-1)}{2}.$$

3. Let a unit square be divided into a square of side $(4m + 1)^{-1}$ in the center and 2m annular figures of equal width $(4m + 1)^{-1}$ surrounding it, as shown in Figure 5.5.

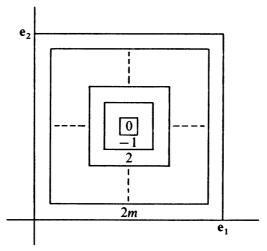


Figure 5.5

185

Let $\phi(x, y) = 0$ for (x, y) in the small square or outside the large square. Let $\phi(x, y) = (-1)^k k$ in the kth annular figure, k = 1, ..., 2m. Show that

$$\int \phi \ dV_2 = \frac{8m(2m+1)}{(4m+1)^2}.$$

What is this approximately when m is large?

- **4.** (a) Show that if f is integrable, then $\int (cf)dV = c \int f dV$. [Hint: Show that this is true if $c \ge 0$, and that $-\int g dV = \int (-g)dV$ for every g. If c < 0, set g = cf and g = -cf.]
 - (b) Show that $\overline{\int} f dV \leq \overline{\int} g dV$ if $f \leq g$.

5.4 Integrals over bounded sets

Let A be a bounded measurable set and f be a function that is bounded on A. More precisely, the domain of f contains A and there is a number C such that $|f(\mathbf{x})| \le C$ for every $\mathbf{x} \in A$. Let us consider a new function with the same values as f on A and the value 0 otherwise. This function is denoted by f_A . Thus

$$f_A(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \in A \\ 0 & \text{if } \mathbf{x} \notin A. \end{cases}$$

The function f_A is bounded and has compact support. The values of f outside A should contribute nothing to the integral of f over A.

Definition. The function f is integrable over A if f_A is an integrable function. The integral of f over A is the number

$$\int_{A} f \, dV = \int f_{A} \, dV.$$

In later sections it is sometimes convenient to use the notation $\int_A f(\mathbf{x})dV(\mathbf{x})$ for the integral $\int_A f dV$. Moreover, we sometimes emphasize the role of the dimension n by writing dV_n instead of dV. When n = 1, we usually write $\int_A f(x)dx$ instead of $\int_A f(x)dV_1(x)$.

Proposition 5.4 implies that sums and scalar multiples of functions integrable over A are also integrable over A. Theorem 5.5 gives a widely applicable condition for integrability of f. In the meantime, we summarize a number of properties of the integral in the following theorem.

Theorem 5.4. If all the integrals involved exist, then:

- (1) $\int_{A} (f+g)dV = \int_{A} f \, dV + \int_{A} g \, dV$.
- (2) $\int_A (cf)dV = c \int_A f dV.$
- (3) $\int_{A} 1 \ dV = V(A)$.
- (4) If $f(\mathbf{x}) \leq g(\mathbf{x})$ for every $\mathbf{x} \in A$, then $\int_A f \, dV \leq \int_A g \, dV$.
- (5) If $|f(\mathbf{x})| \le C$ for every $\mathbf{x} \in A$, then $|\int_A f \, dV| \le \int_A |f| \, dV \le CV(A)$.
- (6) If A is a null set, then $\int_A f dV = 0$.
- (7) If $A \cap B$ is a null set, then $\int_{A \cup B} f \, dV = \int_A f \, dV + \int_B f \, dV$.