HW14 MTH 427/527 Fall 2024

Exercise 5.4.18 Find an example of a closed bounded interval [a, b] and a function $f: [a, b] \to \mathbb{R}$ such that f attains neither a maximum nor a minimum value on [a, b].

Solution: Let [a, b] = [0, 1] and define

$$f(x) = \begin{cases} -\frac{1}{x}, & 0 < x < \frac{1}{2} \\ \frac{1}{1-x}, & \frac{1}{2} \le x < 1 \\ 0, & x = 0, 1. \end{cases}$$

pictured here:

This function does not attain a maximum or minimum on [0, 1].

Example 5.4.19 Find an example of a bounded interval I and a function $\overline{f: I \to \mathbb{R}}$ which is continuous on I such that f attains neither a maximum

or minimum value on $\frac{I}{2}$. Solution: Let $I = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and define $f: I \to \mathbb{R}$ by $f(x) = \tan(x)$. This function has asymptotes at the two endpoints, goes to $+\infty$ near the right endpoint and goes toward $-\infty$ at the left endpoint. So it does not attain a max or min on I.

Exercise 5.4.24 Suppose $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ is uniformly continuous. Show that if $\{x_n\}_{n \in I}$ is a Cauchy sequence in D, then $\{f(x_n)\}$ is a Cauchy sequence in f(D).

Solution: Let $\{x_n\}$ be a Cauchy sequence in D, i.e. for every $\epsilon > 0$ there exists N so that for all m, n > N, $|x_n - x_m| < \epsilon$. Since f is uniformly continuous, for every $\epsilon > 0$ there exists $\delta > 0$ so that if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. Let $\epsilon > 0$ and choose $\delta > 0$ so that for all $x, y \in D$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \epsilon$. Choose N > 0 so that if m, n > N, $|x_n - x_m| < \delta$. Since $|x_n - x_m| < \delta$, we see that $|f(x_n) - f(x_m)| < \epsilon$, completing the proof that $\{f(x_n)\}$ is a Cauchy sequence.