HW13 MTH 427/527 Fall 2024

Exercise 5.3.2 Show that $\lim_{x\to 4^+}$ 7 $\frac{1}{4-x} = -\infty$ and $\lim_{x \to 4^-}$ 7 $\frac{1}{4-x} = +\infty.$ Solution: Let $M \in (-\infty, 0)$ and choose $\delta = -\frac{7}{10}$ $\frac{1}{M} > 0$. Suppose that $x \in$ $(4, 4 + \delta)$, i.e. $4 < x < 4 + \delta$. Hence $-4 > -x > -4 - \delta$ and we get

$$
0 > 4 - x > -\delta = -\left(-\frac{7}{M}\right) = \frac{7}{M}.
$$

Therefore, $\frac{1}{4-x} < \frac{M}{7}$ $\frac{M}{7}$ and we obtain $\frac{7}{4-x} < M$. Thus we have shown for any negative M, there is some $\delta > 0$ so that for all $x \in (4, 4 + \delta), \frac{7}{4 - x} < M$, completing the proof that $\lim_{x\to 4^+}$ 7 $\frac{1}{4-x} = -\infty$. The proof of the other limit works the same way.

Exercise 5.3.3 Verify that $\lim_{x \to +\infty} \frac{x+1}{x+2}$ $\frac{x+1}{x+2} = 1.$ Solution:

Thinking: We need to find M so that for all $x \in (M, \infty) \cap D$, $|x+z|$ $x + 1$ $\left|\frac{x+1}{x+2}-1\right| < \epsilon.$ This is equivalent to \vert $|x+2| < \epsilon$. We can pick M so large that $M > 0$, so $M < x < \infty$ hence $x + 1 - x - 2$ $x + 2$ $\vert < \epsilon$, or \vert −1 $x + 2$ $\vert < \epsilon$. So we would need $0 < M + 2 < x + 2 < \infty$. Thus we would have $\frac{1}{x+2} < \epsilon$, i.e. $x + 2 > \frac{1}{\epsilon}$ $\frac{1}{\epsilon}$, or $x > \frac{1}{x}$ $\frac{1}{\epsilon}-2.$

Solution: Let $\epsilon > 0$ and choose $M > \frac{1}{\epsilon} - 2$ and let $M < x < \infty$, so we have 1 $\frac{1}{\epsilon}$ – 2 < M < x. Thus $\frac{1}{\epsilon}$ < x + 2, hence $\epsilon > \frac{1}{x+1}$ $\frac{1}{x+2}$. Therefore, now compute for such x , $|x+1|$ -1 -1 1

$$
\left| \frac{x+1}{x+2} - 1 \right| = \left| \frac{-1}{x+2} \right| = \frac{1}{x+2} < \epsilon,
$$

completing the proof. ■

Exercise 5.4.1 Prove: Suppose $D \subset \mathbb{R}$, $\alpha \in \mathbb{R}$, $f: D \to \mathbb{R}$, and $g: D \to \mathbb{R}$. If f and g are continuous at a, then αf , $f + g$, and fg are continuous at a. Moreover, if $g(x) \neq 0$ for all $x \in D$, then $\frac{f}{g}$ is continuous at a.

Proof: Since f and g are continuous at a, we know that $\lim_{x \to a} f(x) = f(a)$ and $\lim_{x\to a} g(x) = g(a)$. Using the properties of limits of functions (limit of sum is sum of limits, etc), we see that

$$
\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + g(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a) = (f+g)(a),
$$

completing the proof that $f + g$ is continuous at a. Similarly,

$$
\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x) = \alpha f(a) = (\alpha f)(a),
$$

completing the proof that αf is continuous at a. Similarly,

$$
\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x)g(x) = (\lim_{x \to a} f(x)) (\lim_{x \to a} g(x)) = f(a)g(a) = (fg)(a),
$$

completing the proof that fg is continuous at a . Finally, compute

$$
\lim_{x \to a} \frac{f}{g}(x) = \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{f(a)}{g(a)} = \left(\frac{f}{g}\right)(a),
$$

showing that $\frac{f}{g}$ is continuous at a.

Exercise 5.4.3 Show that if $f: D \to \mathbb{R}$ is continuous at $a \in D$ and $f(a) > 0$, then there exists an open interval I such that $a \in I$ and $f(x) > 0$ for every $x \in I \cap D$.

Proof: We have that $\frac{f(a)}{2} > 0$. Choose $\epsilon = \frac{f(a)}{2}$ $\frac{d^{(n)}}{2}$. Since f is continuous at a, there exists $\delta > 0$ so that for all $x \in (a - \delta, a + \delta) \cap D$, $|f(x) - f(a)| < \epsilon = \frac{f(a)}{g(a)}$ $rac{(\omega)}{2}$. Therefore we have shown

$$
-\frac{f(a)}{2} < f(x) - f(a) < \frac{f(a)}{2}.
$$

Add $f(a)$ to get

$$
0 < \frac{f(a)}{2} < f(x) < \frac{3f(a)}{2},
$$

showing that for any $x \in (a-\delta, a+\delta) =: I$ that $f(x) > 0$, completing the proof. ■

Exercise 5.4.10 Let $D \subset \mathbb{R}$. We say that a function $f: D \to \mathbb{R}$ is Lipschitz if there exists $\alpha \in \mathbb{R}$, $\alpha > 0$, such that $|f(x) - f(y)| \leq \alpha |x - y|$ for all $x, y \in D$. Show that if f is Lipschitz, then f is continuous.

Solution: Let $\epsilon > 0$ and let $a \in D$. Choose $\delta = \frac{\epsilon}{a}$ $\frac{\varepsilon}{\alpha}$. If

$$
x \in (a - \delta, a + \delta) = \left(a - \frac{\epsilon}{\alpha}, a + \frac{\epsilon}{\alpha}\right),
$$

This means that

$$
a - \frac{\epsilon}{a} < x < a + \frac{\epsilon}{\alpha},
$$

hence

$$
-\frac{\epsilon}{\alpha} < x - a < \frac{\epsilon}{\alpha}
$$

,

and we get

$$
-\epsilon < \alpha(x - a) < \epsilon,
$$

meaning that $\alpha |x - a| < \epsilon$. Therefore, we compute

$$
|f(x) - f(a)| \stackrel{\text{Lipschitz}}{\le} \alpha |x - a| < \epsilon,
$$

completing the proof that f is continuous at a. \blacksquare

Exercise 5.4.12 Give an example of a closed interval $[a, b] \subset \mathbb{R}$ and a function $f: [a, b] \to \mathbb{R}$ which do not satisfy the conclusion of the Intermediate Value Theorem.

Solution: We will define f to not be continuous to make IVT not hold. For example, let $[a, b] = [0, 1]$ and define $f(x) = \begin{cases} -1, & 0 < x < 0.5 \\ 1, & 0 \le x < 1 \end{cases}$ 1, $0.5 \leq x \leq 1$. In this case $f(0) = -1$ anad $f(1) = 1$ so we can choose $s = 0$ so that $f(0) \le s \le f(1)$. But there is no $c \in [a, b]$ so that $f(c) = 0$.