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Exercise 5.3.2 Show that lim = —oo and lim = +400.
z—4+ 4 —x 77;—)4— 4—x
Solution: Let M € (—o0,0) and choose § = 3 0. Suppose that = €

(4,4+9),1e. 4<x<4446. Hence —4 > —z > —4 — § and we get

7 7
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1 M
Therefore, —— < — and we obtain < M. Thus we have shown for any

4—z 7 14—z .
negative M, there is some ¢ > 0 so that for all x € (4,4 + ), g < M, com-
—x
7
pleting the proof that lim+ = —o0. The proof of the other limit works
z—4 — T

the same way.
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Exercise 5.3.3 Verify that lim rrl 1
z—+o00 T + 2

Solution: .
Thinking: We need to find M so that for all z € (M, 00) N D, % — 1‘ < e.
r+1—x—2 —
This is equivalent to rHlores < €, or |——| < €. So we would need
T+ 2 x4+ 2

|z + 2| < e. We can pick M so large that M > 0, so M < x < oo hence

1 1
0< M+2<2x+2 < oo. Thus we would have ; <€ ie x+2>— or
x €
1
x> - —2.
‘ 1
Solution: Let ¢ > 0 and choose M > — — 2 and let M < x < oo, so we have
€

1 1 1
- —2< M < x. Thus — < x + 2, hence € > ot Therefore, now compute
€ x

€
for such z,

< €,

z+1 1=
T+ 2 B
completing the proof. B
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Exercise 5.4.1 Prove: Suppose D CR, a € R, f: D - R, and g: D - R. If f
and g are continuous at a, then af, f+ g, and fg are continuous at a. Moreover,

if g(z) # 0 for all € D, then = is continuous at a.
g
Proof: Since f and g are continuous at a, we know that lim f(z) = f(a) and
r—a
lim g(x) = g(a). Using the properties of limits of functions (limit of sum is sum
T—a

of limits, etc), we see that

lim (f+9)(x) = lim f(x)+g(x) = lim f(x)+lim g(x) = f(a)+g(a) = (f+9)(a),

r—a



completing the proof that f + g is continuous at a. Similarly,

lim (af)(2) = o lim f(x) = af(a) = (af)(a),

T—a r—a

completing the proof that af is continuous at a. Similarly,

lim (fg)(2) = lim f(x)g(x) = (Jim /(2)) (m g(x)) = J(@)g(a) = (fg)(a).

completing the proof that fg is continuous at a. Finally, compute
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showing that i is continuous at a. W
g

Exercise 5.4.3 Show that if f: D — R is continuous at a € D and f(a) > 0,
then there exists an open interval I such that a € I and f(z) > 0 for every
xelInD.

Proof: We have that f(2a) > 0. Choose € = @. Since f is continuous at a,
there exists 6 > 0 so that for all z € (a—6,a+0)ND, |f(x)— f(a)] < e= @.
Therefore we have shown

fla f(a

LD ) - gy < A2
Add f(a) to get
3
0 10 _ < 300
2 2

showing that for any = € (a —9d,a+9) =: I that f(z) > 0, completing the proof.

Exercise 5.4.10 Let D C R. We say that a function f: D — R is Lipschitz if
there exists o € R, o > 0, such that |f(z) — f(y)| < ajz —y| for all z,y € D.
Show that if f is Lipschitz, then f is continuous.

Solution: Let ¢ > 0 and let a € D. Choose § = —. If
[0

xemf&a+®:<wf§a+§>>

This means that

€ €
a——-<z<a+ —,
a o

hence
€ €
——<r—a< —,
« «



and we get
—e < afr—a)<e,

meaning that a|x — a| < e. Therefore, we compute

Lipschitz
[f(@) = fla)] < alz—al<e

completing the proof that f is continuous at a. B

Exercise 5.4.12 Give an example of a closed interval [a,b] C R and a function
f:]a,b] = R which do not satisfy the conclusion of the Intermediate Value
Theorem.

Solution: We will define f to not be continuous to make IVT not hold. For
example, let [a,b] = [0,1] and define f(z) = { 1_1’ 8;;;2?
f(0) = —1 anad f(1) =1 so we can choose s = 0 so that f(0) <s < f(1). But
there is no ¢ € [a, b] so that f(c) =0.

. In this case



