HW13 MTH 427/527 Fall 2024

Exercise 5.3.2 Show that $\lim_{x \to 4^+} \frac{7}{4-x} = -\infty$ and $\lim_{x \to 4^-} \frac{7}{4-x} = +\infty$. Solution: Let $M \in (-\infty, 0)$ and choose $\delta = -\frac{7}{M} > 0$. Suppose that $x \in (4, 4+\delta)$, i.e. $4 < x < 4+\delta$. Hence $-4 > -x > -4-\delta$ and we get

$$0 > 4 - x > -\delta = -\left(-\frac{7}{M}\right) = \frac{7}{M}.$$

Therefore, $\frac{1}{4-x} < \frac{M}{7}$ and we obtain $\frac{7}{4-x} < M$. Thus we have shown for any negative M, there is some $\delta > 0$ so that for all $x \in (4, 4+\delta)$, $\frac{7}{4-x} < M$, completing the proof that $\lim_{x \to 4^+} \frac{7}{4-x} = -\infty$. The proof of the other limit works the same way.

Exercise 5.3.3 Verify that $\lim_{x \to +\infty} \frac{x+1}{x+2} = 1$. Solution:

Thinking: We need to find M so that for all $x \in (M, \infty) \cap D$, $\left| \frac{x+1}{x+2} - 1 \right| < \epsilon$. This is equivalent to $\left| \frac{x+1-x-2}{x+2} \right| < \epsilon$, or $\left| \frac{-1}{x+2} \right| < \epsilon$. So we would need $|x+2| < \epsilon$. We can pick M so large that M > 0, so $M < x < \infty$ hence $0 < M+2 < x+2 < \infty$. Thus we would have $\frac{1}{x+2} < \epsilon$, i.e. $x+2 > \frac{1}{\epsilon}$, or $x > \frac{1}{\epsilon} - 2$.

Solution: Let $\epsilon > 0$ and choose $M > \frac{1}{\epsilon} - 2$ and let $M < x < \infty$, so we have $\frac{1}{\epsilon} - 2 < M < x$. Thus $\frac{1}{\epsilon} < x + 2$, hence $\epsilon > \frac{1}{x+2}$. Therefore, now compute for such x, $\left|\frac{x+1}{\epsilon} - 1\right| = \left|\frac{-1}{\epsilon}\right| = \frac{1}{\epsilon} < \epsilon$

$$\left|\frac{x+1}{x+2} - 1\right| = \left|\frac{-1}{x+2}\right| = \frac{1}{x+2} < \epsilon_{1}$$

completing the proof. \blacksquare

Exercise 5.4.1 Prove: Suppose $D \subset \mathbb{R}$, $\alpha \in \mathbb{R}$, $f: D \to \mathbb{R}$, and $g: D \to \mathbb{R}$. If f and g are continuous at a, then $\alpha f, f+g$, and fg are continuous at a. Moreover, if $g(x) \neq 0$ for all $x \in D$, then $\frac{f}{g}$ is continuous at a.

Proof: Since f and g are continuous at a, we know that $\lim_{x \to a} f(x) = f(a)$ and $\lim_{x \to a} g(x) = g(a)$. Using the properties of limits of functions (limit of sum is sum of limits, etc), we see that

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + g(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a) = (f+g)(a),$$

completing the proof that f + g is continuous at a. Similarly,

$$\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x) = \alpha f(a) = (\alpha f)(a),$$

completing the proof that αf is continuous at a. Similarly,

$$\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right) = f(a)g(a) = (fg)(a),$$

completing the proof that fg is continuous at a. Finally, compute

$$\lim_{x \to a} \frac{f}{g}(x) = \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{f(a)}{g(a)} = \left(\frac{f}{g}\right)(a),$$

showing that $\frac{f}{g}$ is continuous at a.

Exercise 5.4.3 Show that if $f: D \to \mathbb{R}$ is continuous at $a \in D$ and f(a) > 0, then there exists an open interval I such that $a \in I$ and f(x) > 0 for every $x \in I \cap D$.

Proof: We have that $\frac{f(a)}{2} > 0$. Choose $\epsilon = \frac{f(a)}{2}$. Since f is continuous at a, there exists $\delta > 0$ so that for all $x \in (a - \delta, a + \delta) \cap D$, $|f(x) - f(a)| < \epsilon = \frac{f(a)}{2}$. Therefore we have shown

$$-\frac{f(a)}{2} < f(x) - f(a) < \frac{f(a)}{2}.$$

Add f(a) to get

$$0 < \frac{f(a)}{2} < f(x) < \frac{3f(a)}{2},$$

showing that for any $x \in (a - \delta, a + \delta) =: I$ that f(x) > 0, completing the proof.

Exercise 5.4.10 Let $D \subset \mathbb{R}$. We say that a function $f: D \to \mathbb{R}$ is *Lipschitz* if there exists $\alpha \in \mathbb{R}$, $\alpha > 0$, such that $|f(x) - f(y)| \le \alpha |x - y|$ for all $x, y \in D$. Show that if f is Lipschitz, then f is continuous.

Solution: Let $\epsilon > 0$ and let $a \in D$. Choose $\delta = \frac{\epsilon}{\alpha}$. If

$$x \in (a - \delta, a + \delta) = \left(a - \frac{\epsilon}{\alpha}, a + \frac{\epsilon}{\alpha}\right),$$

This means that

$$a - \frac{\epsilon}{a} < x < a + \frac{\epsilon}{\alpha}$$

hence

$$\frac{\epsilon}{\alpha} < x - a < \frac{\epsilon}{\alpha}$$

and we get

$$\epsilon < \alpha(x-a) < \epsilon$$

meaning that $\alpha |x - a| < \epsilon$. Therefore, we compute

$$|f(x) - f(a)| \stackrel{\text{Lipschitz}}{\leq} \alpha |x - a| < \epsilon,$$

completing the proof that f is continuous at a.

Exercise 5.4.12 Give an example of a closed interval $[a, b] \subset \mathbb{R}$ and a function $f: [a, b] \to \mathbb{R}$ which do not satisfy the conclusion of the Intermediate Value Theorem.

Solution: We will define f to not be continuous to make IVT not hold. For example, let [a,b] = [0,1] and define $f(x) = \begin{cases} -1, & 0 < x < 0.5 \\ 1 & 0.5 \le x \le 1 \end{cases}$. In this case f(0) = -1 anad f(1) = 1 so we can choose s = 0 so that $f(0) \le s \le f(1)$. But there is no $c \in [a,b]$ so that f(c) = 0.