HW12 MTH 427/527 Fall 2024

Exercise 5.1.1 Suppose $D \subset \mathbb{R}$, a is a limit point of $D, f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ R if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then $\lim_{x\to a} f(x)g(x) = LM$. Solution: Let $\{x_n\} \in S(D, a)$ be an arbitrary sequence in D that converges to a. Our hypothesis shows that $\lim_{n\to\infty} f(x_n) = L$ and $\lim_{n\to\infty} g(x_n) = M$. Therefore has the limit of a product of accuracy theorem, we have

by the limit of a product of sequences theorem, we have

$$\lim_{n \to \infty} f(x_n)g(x_n) = \left(\lim_{n \to \infty} f(x_n)\right) \left(\lim_{n \to \infty} g(x_n)\right) = LM,$$

and since the sequence $\{x_n\}$ is an arbitrary sequence in S(D, a), we have completed the proof.

Exercises 5.1.2 and 5.1.3 are proven the same way!

Exercise 5.1.4 Show that if f is a polynomial and $a \in \mathbb{R}$, then $\lim_{x \to a} f(x) = f(a)$. *Proof*: Let $f(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$. Using the limit properties of sums and the fact that $\lim_{x \to a} x^n = a^n$ for any n = 0, 1, 2, ..., we compute

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left(a_0 + \dots + a_n x^n \right)$$
$$= a_0 \left(\lim_{x \to a} 1 \right) + a_1 \left(\lim_{x \to a} x \right) + \dots + a_n \left(\lim_{x \to a} x^n \right)$$
$$= a_0 + a_1 a + \dots + a_n a^n = f(a),$$

completing the proof. \blacksquare

Exercise 5.1.5 Show that if f is a rational function and $a \in \text{dom}(f)$, then $\overline{\lim_{x \to a} f(x) = f(a)}.$

Proof: Let $f(x) = \frac{a_0 + a_1 x + \ldots + a_n x^n}{b_0 + b_1 x + \ldots + b_m x^m}$. By Exercise 5.1.4 and the fact that limits of quotients are quotients of limits, we obtain

$$\lim_{x \to a} f(x) = \frac{\lim_{x \to a} a_0 + a_1 x + \dots + a_n x^n}{\lim_{x \to a} b_0 + b_1 x + \dots + b_m x^m} = \frac{a_0 + a_1 a + \dots + a_n a^n}{b_0 + b_1 a + \dots + b_m a^m} = f(a),$$

completing the proof. \blacksquare

Exercise 5.1.8 just appeals to the squeeze theorem for sequences, similar to 5.1.1, 5.1.2, and 5.1.3 above.