HW13 MTH 300 Fall 2024

Section 11.1 #2: Consider the relation $R = \{(a, b), (a, c), (c, c), (b, b), (c, b), (b, c)\}$ on the set $A = \{a, b, c\}$. Is R reflexive? Is R symmetric? Is R transitive? Solution: No, R is not reflexive, because $(a, a) \notin R$. No, R is not symmetric because $(a, c) \in R$ but $(c, a) \notin R$. Yes R is transitive.

Section 11.1 #12 Prove that the relation | (divides) on the set \mathbb{Z} is reflexive and transitive.

Solution: To show that it is reflexive, we note that for any $x \in \mathbb{Z}$, x|x because choosing $k = 1 \in \mathbb{Z}$ yields x = kx. To show | is transitive, let a|b (hence there is $k \in \mathbb{Z}$ so that b = ak) and b|c (hence there is $\ell \in \mathbb{Z}$ so that $c = b\ell$). Then

$$c = b\ell = (ak)\ell = a(k\ell),$$

showing that a|c. Thus | is transitive.

Section 11.1 #14 Suppose that R is a symmetric transitive relation on a set \overline{A} , and there is some $a \in A$ so that aRx for all $x \in A$. Prove that R is reflexive. Solution: Let $x \in R$. We know that aRx and since R is transitive, we know xRa. So we have xRa and aRx and by the transitive property we obtain xRx. Since x was an arbitrary element of A, we have shown that R is reflexive.

Section 11.2 #2 Let $A = \{a, b, c, d, e\}$. Suppose R is an equivalence relation on A. Suppose R has two equivalence classes. Also aRd, bRc, and eRd. write out R as a set.

Solution: Since eRd and R symmetric, we have dRa. Since we have eRd and dRa, we have eRa. This shows that $\{e, a, d\} \subset [a]$. Since bRc, we know that $\{b, c\} \subset [c]$. Since equivalence classes are disjoint (meaning their intersection is empty or the whole set) and we know that there are two equivalence classes, and $A = \{e, a, d\} \cup \{b, c\}$, we have shown that $[a] = \{e, a, d\}$ and $[c] = \{b, c\}$.

Section 11.2 #10: Suppose R and S are two equivalence relations on a set A. Prove that $R \cap S$ is also an equivalence relation.

Solution: Since both R and S are equivalence relations, for every $a \in A$, $(a, a) \in R$ and $(a, a) \in S$, hence $(a, a) \in R \cap S$; thus $R \cap S$ is reflexive. Since for all $(a, b) \in R$, $(b, a) \in R$ and for all $(c, d) \in S$, $(d, c) \in S$, for any element $(e, f) \in R \cap S$ $(f, e) \in R \cap S$. Finally, if $a, b, c \in A$ with $(a, b), (b, c) \in R \cap S$, since (a, b) and (b, c) are in both the equivalence relations R and S, we know that (a, c) is in both R and S, hence $(a, c) \in R \cap S$, completing the proof.

Section 11.3 #4 Let $A = \{a, b, c, d, e\}$. Suppose R is an equivalence relation on A. Suppose also that aRd, bRc, eRa, and cRe. How many equivalence classes does R have?

Solution: Since we have eRa and aRd, we obtain eRd by transitivity (so $\{e, a, d\} \subset [a]$). Since we have bRc and cRe, we have bRe by transitivity (so $\{b, c, e\} \subset [b]$. But this mean $[a] \cap [b]$ is nonempty, so in fact [a] = [b]

by a theorem. Since all elements of A were in either [a] or [b], we have that $[a] = [b] = \{a, b, c, d, e\}$, i.e. there is exactly one equivalence class.

Section 11.3 #8 Define a relation R on \mathbb{Z} as xRy if and only if $x^2 + y^2$ is even. Prove R is an equivalence relation.

Proof: First we show that R is reflexive. Given any $x \in R$, $x^2 + x^2 = 2x^2$ is even, thus $(x, x) \in R$ for all $x \in \mathbb{Z}$, hence R is reflexive. If $(x, y) \in R$, it means that $x^2 + y^2$ is even, but since $x^2 + y^2 = y^2 + x^2$ then also must be even, we have $(y, x) \in R$, showing that R is symmetric. Finally, if $(x, y) \in R$ and $(y, z) \in R$, it means that $x^2 + y^2$ is even and $y^2 + z^2$ is even. So there exist $k, \ell \in \mathbb{Z}$ so that $x^2 + y^2 = 2k$ and $y^2 + z^2 = 2\ell$. Therefore, we see that $x^2 = 2k - y^2$ and $z^2 = 2\ell - y^2$. Thus, we compute

$$x^{2} + z^{2} = (2k - y^{2}) + (2\ell - y^{2}) = 2k + 2\ell - 2y^{2} = 2(k + \ell - y^{2}),$$

showing that $x^2 + z^2$ is even.

Section 11.5 #4 Write out the addition and multiplication tables for \mathbb{Z}_6 .

10											
	+	0	1	2	3	4	5				
	0	0	1	2	3	4	5				
	1	1	2	3	4	5	0				
	2	2	3	4	5	0	1				
	3	3	4	5	0	1	2				
	4	4	5	0	1	2	3				
	5	5	0	1	2	3	4				

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1