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Chapter 10 #2: Prove that
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Proof: The formula is equivalent to
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First check the base case n = 1: the left-hand side
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while the right-hand side equals
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Since the left-hand side and the right-hand side are equal, the base case is
proven.

Now we make our inductive hypothesis: assume that for some n = N,
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What we need to show is that
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On the other hand,
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and so we are done. W
Chapter 10 #5: If n € N, then
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Proof: The claim can be written in summation notation as
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Find the base case n = 1 is true:
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Now assume as inductive hypothesis that

N
(%) PIPAETAREE S
k=1
We need to show that
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So compute
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completing the proof. l

Chapter 10 #11: Prove that 3|(n® + 5n + 6) for every integer n > 0.

Proof: First prove the base case n = 0: it is true because 3|(0® + 5(0) + 6),
i.e. 3|6. Now assume the inductive hypothesis 3|(N3 + 5N + 6), and we need to
show that 3|((N 4 1) + 5(N + 1) + 6). By the inductive hypothesis, we know
there exists k € Z so that

(%) 3= (N?+5N+6).
Now compute
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which means that 3[((N + 1)® + 5(N + 1) + 6), completing the proof. W
Chapter 10 #26 For the Fibonacci sequence Fj, where I} = Fy = 1, and
Foi1 = F, + F,_1, show that
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Proof: The base case becomes F12 = F1 F5, which is true because F} = F, = 1.
Now assume for inductive hypothesis that
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‘We need to show that
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So, compute
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Recall the Fibonaci sequence’s defining formula (for all n, F, 11 = F,, + F,,_1)
says that for n = N + 1, Fy42 = Fn11 + F, so we have shown
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completing the proof. H



