Recall that if a surface S is parametrized by $\vec{r}(u, v)$, with $(u, v) \in D$ then the scalar surface integral is given by

$$
\iint_{S} f(x, y, z) \mathrm{d} S=\iint_{D} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| \mathrm{d} A
$$

Similarly, if S is orientiable with unit normal vector $\vec{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|}$ and \vec{F} is a vector field over S, then the flux integral over S is given by

$$
\left.\iint_{S} \vec{F}(x, y, z)\right) \mathrm{d} S=\iint_{D} \vec{F}(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) \mathrm{d} A
$$

Note sometimes $\vec{r}_{v} \times \vec{r}_{u}$ will be needed instead of $\vec{r}_{u} \times \vec{r}_{v}$ in order to have the correct orientation. Recall that cross products are anti-commutative, i.e. for all vectors \vec{x} and $\vec{y}, \vec{x} \times \vec{y}=-\vec{y} \times \vec{x}$.

In the following problems, set up but do not evaluate the surface integral as a double integral. Include in your submission a picture of the surface and at least one normal vector to the surface.

1. $\iint_{S} x^{2} z^{2} \mathrm{~d} S$ where S is the surface $x=y+2 z^{2}$ and $0 \leq y \leq 1$ and $0 \leq z \leq 1$.
2. $\iint_{S}\langle x,-z, y\rangle \mathrm{d} S$ where S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ lying in the first octant (i.e. where $x>0, y>0$, and $z>0$) and orientation toward the origin.
3. $\iint_{S}\left\langle x, y, z^{4}\right\rangle \mathrm{d} S$ where S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath the plane $z=1$ and upward orientation
