Written HW12 – MATH 3503 Fall 2022

Recall that if a surface S is parametrized by $\vec{r}(u, v)$, with $(u, v) \in D$ then the scalar surface integral is given by

$$\iint_{S} f(x, y, z) \mathrm{d}S = \iint_{D} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| \,\mathrm{d}A.$$

Similarly, if S is orientiable with unit normal vector $\vec{n} = \frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|}$ and \vec{F} is a vector field over S, then the flux integral over S is given by

$$\iint_{S} \vec{F}(x, y, z)) \mathrm{d}S = \iint_{D} \vec{F}(\vec{r}(u, v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) \, \mathrm{d}A.$$

Note sometimes $\vec{r}_v \times \vec{r}_u$ will be needed instead of $\vec{r}_u \times \vec{r}_v$ in order to have the correct orientation. Recall that cross products are anti-commutative, i.e. for all vectors \vec{x} and \vec{y} , $\vec{x} \times \vec{y} = -\vec{y} \times \vec{x}$.

In the following problems, set up **but do not evaluate** the surface integral as a double integral. Include in your submission a picture of the surface and at least one normal vector to the surface.

- 1. $\iint_S x^2 z^2 dS$ where S is the surface $x = y + 2z^2$ and $0 \le y \le 1$ and $0 \le z \le 1$.
- 2. $\iint_S \langle x, -z, y \rangle \, \mathrm{d}S$ where S is the part of the sphere $x^2 + y^2 + z^2 = 4$ lying in the first octant (i.e. where x > 0, y > 0, and z > 0) and orientation toward the origin.
- 3. $\iint_{S} \langle x, y, z^4 \rangle dS$ where S is the part of the cone $z = \sqrt{x^2 + y^2}$ beneath the plane z = 1 and upward orientation