Written HW6 - MATH 3504 Spring 2021

Due by 24 February for timely completion credit

We will explore resonance in this homework. Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}+3 x=\sin (\omega t) \tag{1}
\end{equation*}
$$

where ω is an unknown constant.
\#1. Find the general solution of homogeneous differential equation $x^{\prime \prime}+3 x=0$.
\#2. Solve the nonhomogeneous equation (11) using the method of undetermind coefficients (note: your solution will have the constant " ω " in it).
$\# 3$. Use your general solution above to find the solution which is subject to the initial conditions $x(0)=0$ and $x^{\prime}(0)=1$.
\#4. Write and plot the solution found in \#3 using three different integer values of for $\omega \neq 0$. Include your plots in your submission.
\#5. What value of ω would make equation (1) resonant? For this value of ω, do the method of undetermined coefficients again to solve (1) (note: redoing it is required - think about why!). Plot the solution for this value and describe how it looks differently to the solutions you plotted in $\# 4$. Include your plot in the submission.

