$\underline{\text{Written HW12}-\text{MATH 3503 Fall 2020}}$

Due by 20 November for timely completion credit

Suppose S is a surface parametrized by $\vec{r}(u,v)$ for $(u,v) \in D$. The scalar surface integral of a function f is

$$\iint_{S} f dS = \iint_{D} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| dA$$

Suppose further that \vec{F} is a three-dimensional vector field. The vector field surface integral of \vec{F} over S is

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F}(\vec{r}(u, v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) dA,$$

where $\vec{r}_u \times \vec{r}_v$ has the appropriate orientation (note: depending on the specified orientation in the problem below, you may instead need to use $\vec{r}_v \times \vec{r}_u$ – check!!)

- 1. Calculate $\iint_S x^2 y z dS$, where S is the part of the plane z = 1 + 2x + 3y that lies above the rectangle $0 \le x \le 3, \ 0 \le y \le 2$.
- 2. Calculate $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F} = \langle x, y, z^4 \rangle$ and S is the part of the cone $z = \sqrt{x^2 + y^2}$ beneath the plane z = 1 with downward orientation (i.e. normal vectors point away from the surface).