Written HW12 - MATH 3503 Fall 2020
Due by 20 November for timely completion credit
Suppose S is a surface parametrized by $\vec{r}(u, v)$ for $(u, v) \in D$. The scalar surface integral of a function f is

$$
\iint_{S} f \mathrm{~d} S=\iint_{D} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| \mathrm{d} A
$$

Suppose further that \vec{F} is a three-dimensional vector field. The vector field surface integral of \vec{F} over S is

$$
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}=\iint_{D} \vec{F}(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) \mathrm{d} A
$$

where $\vec{r}_{u} \times \vec{r}_{v}$ has the appropriate orientation (note: depending on the specified orientation in the problem below, you may instead need to use $\vec{r}_{v} \times \vec{r}_{u}$ - check!!)

1. Calculate $\iint_{S} x^{2} y z \mathrm{~d} S$, where S is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $0 \leq x \leq 3,0 \leq y \leq 2$.
2. Calculate $\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}$ where $\vec{F}=\left\langle x, y, z^{4}\right\rangle$ and S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath the plane $z=1$ with downward orientation (i.e. normal vectors point away from the surface).
