MATH 3504 - EXAM 1 FALL 2019

Friday, 15 February 2019
Instructor: Tom Cuchta

Instructions:

- Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must show work backing up your claim. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- Good luck!

Undetermined coefficients table to solve $a x^{\prime \prime}+b x^{\prime}+c x=f(t)$

Form of $f(t)$	Trial form for $x_{p}(t)$
α	A
$\alpha e^{\beta t}$	$A e^{\beta t}$
Polynomial of degree n	$A_{n} t^{n}+A_{n-1} t^{n-1}+\ldots+A_{1} t+A_{0}$
$\alpha \sin (\omega t)$	$A \sin (\omega t)+B \cos (\omega t)$
$\alpha \cos (\omega t)$	$A \sin (\omega t)+B \cos (\omega t)$
$\alpha e^{r t} \sin (\omega t)$	$e^{r t}(A \sin (\omega t)+B \cos (\omega t))$
$\alpha e^{r t} \cos (\omega t)$	$e^{r t}(A \sin (\omega t)+B \cos (\omega t))$

1. (10 points) The folowing image is the slope field for the first order nonlinear differential equation

$$
x^{\prime}=(x+2)(x-1)
$$

(a) (4 points) Find the nullcline(s) (i.e. set $x^{\prime}=0$) of the differential equation, write them here, and plot them on the image (label your plot(s) as "nullcline").
Solution: The nullcline is given by $0=(x+2)(x-1)$. Solve this for x to see $x=-2$ and $x=1$, which are horizontal lines at heights -2 and 1 , respectively.
(b) (2 points) Plot the point $(0,0)$ and sketch the solution through that point.
(c) (2 points) Plot the point $(1,2)$ and sketch the solution through that point.
(d) (2 points) Plot the point $(-1,-3)$ and sketch the solution through that point.
2. (10 points) The following image is the slope field for the first order nonlinear differential equation

$$
x^{\prime}=-x+t+1
$$

(a) (2 points) Find the nullcline(s) of the differential equation, write them here, and plot them on the image (label your plot(s) as "nullcline").
Solution: The nullcline is given by $0=-x+t+1$, in other words, $x=t+1$ - the function $x=t$ shifted up by 1.
(b) (2 points) Sketch the solution curve that travels through the origin $(0,0)$ on the image.
(c) (2 points) Plot the point $(-1,0)$ and sketch the solution through that point.
(d) (2 points) Plot the point $(0,1)$ and sketch the solution through that point.
(e) (2 points) Plot the point $(1,2)$ and sketch the solution through that point.
3. (33 points) Solve the first order differential equation.
(a) (11 points) $x^{\prime}=\frac{t^{2}}{\cos (x)}$

Solution: This is a separable equation. Separate variables and integrate to get

$$
\int \cos (x) \mathrm{d} x=\int t^{2} \mathrm{~d} t
$$

Calculating the integrals yields

$$
\sin (x)=\frac{t^{3}}{3}+C
$$

Solving for x then gives us

$$
x(t)=\arcsin \left(\frac{t^{3}}{3}+C\right)
$$

(b) (11 points) $x^{\prime}=t e^{t^{2}}$

Solution: This is a function to be solved by directly integrating:

$$
\begin{aligned}
x(t) & =\int t e^{t^{2}} \mathrm{~d} t \\
& \stackrel{u=t^{2}, \frac{1}{2} \mathrm{~d} u=t \mathrm{~d} t}{=} \frac{1}{2} \int e^{u} \mathrm{~d} u \\
& =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{t^{2}}+C
\end{aligned}
$$

(c) (11 points) $t x^{\prime}+x=\frac{1}{t}$

Solution: This is a linear equation.
Solution 1: The left-hand side can immediately be written as $(x t)^{\prime}=\frac{1}{t}$, which can be integrated (as shown below).

Solution 2: This equation is not in normal form $x^{\prime}+p(t) x=q(t)$, so we first divide by t to put it in normal form to get

$$
\begin{equation*}
x^{\prime}+\frac{1}{t} x=\frac{1}{t^{2}} . \tag{1}
\end{equation*}
$$

Now we make integrating factor $\mu=e^{\left(\int p(t) \mathrm{d} t\right)}$ to get

$$
\mu(t)=e^{\int \frac{1}{t} \mathrm{~d} t}=e^{\ln (t)}=t
$$

Multiplying (1) by t gives the form $t x^{\prime}+x=\frac{1}{t}$ which can be written as

$$
(t x)^{\prime}=\frac{1}{t}
$$

Integrating yields

$$
x t=\int \frac{1}{t} \mathrm{~d} t=\ln (t)+C
$$

Solving for x by dividing by t yields

$$
x(t)=\frac{1}{t} \ln (t)+\frac{C}{t} .
$$

4. (12 points) It can be shown that the second order linear homogeneous differential equation

$$
x^{\prime \prime}+x=0
$$

has general solution

$$
x(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

Use this fact and the method of undetermined coefficients to determine a solution to the second order nonhomogeneous differential equation

$$
x^{\prime \prime}+x=e^{7 t} .
$$

Solution: The solution will be of the form

$$
x(t)=c_{1} \cos (t)+c_{2} \sin (t)+x_{p}(t)
$$

for some function x_{p}. Make the guess $x_{p}(t)=A e^{7 t}$, consequently $x_{p}^{\prime}(t)=7 A e^{7 t}$ and $x_{p}^{\prime \prime}(t)=49 A e^{7 t}$. Plugging these into the differential equation yields

$$
49 A e^{7 t}+A e^{7 t}=e^{7 t}
$$

Since $e^{7 t}$ is always nonzero, we divide by $e^{7 t}$ to get

$$
49 A+A=1
$$

i.e. $50 A=1$. Therefore $A=\frac{1}{50}$. Therefore solutions to the differential equation take the form

$$
x(t)=c_{1} \cos (t)+c_{2} \sin (t)+\frac{1}{50} e^{7 t}
$$

5. (35 points) Solve the given problem.
(a) (11 points) Solve the differential equation $x^{\prime \prime}+4 x^{\prime}+4 x=0$.

Solution: Make guess $x(t)=e^{\lambda t}$, consequently $x^{\prime}(t)=\lambda e^{\lambda t}$ and $x^{\prime \prime}(t)=\lambda^{2} e^{\lambda t}$. Plugging these into the differential equation yields

$$
\lambda^{2} e^{\lambda t}+4 \lambda e^{\lambda t}+4 e^{\lambda t}=0
$$

Since $e^{\lambda t}$ is always nonzero, divide it off to get

$$
\lambda^{2}+4 \lambda+4=0
$$

The left-hand side factors yielding

$$
(\lambda+2)^{2}=0
$$

Therefore, $\lambda=-2-$ this is a double root. Therefore the solution is

$$
x(t)=c_{1} e^{-2 t}+c_{2} t e^{-2 t}
$$

(b) (11 points) Solve the differential equation $x^{\prime \prime}-2 x^{\prime}+3 x=0$.

Solution: Similar to (a), make guess $x(t)=e^{\lambda t}$ and plug in its derivatives into the differential equation, yielding

$$
\lambda^{2}-2 \lambda+3=0
$$

The left-hand side does not factor, and so its roots may be found by using the quadratic formula:

$$
\lambda=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(3)}}{2}=\frac{2 \pm \sqrt{-8}}{2}=1 \pm \frac{2 \sqrt{2} i}{2}=1 \pm \sqrt{2} i .
$$

Therefore, the solution is

$$
x(t)=c_{1} e^{t} \cos (\sqrt{2} t)+c_{2} e^{t} \sin (\sqrt{2} t)
$$

(c) (13 points) Solve the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=0 \\
x(0)=2, \quad x^{\prime}(0)=1
\end{array}\right.
$$

Solution: Making guess $x(t)=e^{\lambda t}$ yields

$$
\lambda^{2}+4=0
$$

Subtract 4 and take square root to get

$$
\lambda=\sqrt{-4}=2 i
$$

Therefore, the solution is

$$
x(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t) .
$$

Now we need to find the initial conditions. First compute

$$
x^{\prime}(t)=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)
$$

Now apply the initial conditions:

$$
\left\{\begin{array}{l}
2=x(0)=c_{1} \cos (0)+c_{2} \sin (0) \\
1=x^{\prime}(0)=-2 c_{1} \sin (0)+2 c_{2} \cos (0)
\end{array}\right.
$$

So

$$
\left\{\begin{array}{l}
2=c_{1}+0 \\
1=2 c_{2}
\end{array}\right.
$$

meaning $c_{1}=2$ and $c_{2}=\frac{1}{2}$. Therefore we have solution

$$
x(t)=2 \cos (2 t)+\frac{1}{2} \sin (2 t)
$$

