Honors HW3 (due 13 February)

We looked at volumes of solids of revolution in class. In this assignment, we will look at surface area of solids of revolution.

From the text, Section 2.4, p. 279, the surface area of a solid of revolution formed by rotating the curve $f(x)$ above $[a, b]$ around the x-axis is given by

$$
\text { SurfaceArea }=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x
$$

1.) Find the surface area of the solid of revolution obtained by rotating the curve $f(x)=x^{3}$ lying above $[0,1]$ around the x-axis.
2.) Find the surface area of the solid of revolution obtained by rotating the curve $f(x)=\sqrt{9-x^{2}}$ lying above the interval $[-2,2]$ around the x-axis.
3.) Set up but do not evaluate an integral to compute the surface area of the solid of revolution obtained by rotating the curve $f(x)=\sin (2 x)$ lying above $\left[0, \frac{\pi}{8}\right]$ about the x-axis.
4.) Use software (my suggestion: WolframAlpha) to numerically solve the integral that you found in Problem 3.

