continuity: Let (M, d_1) and (N, d_2) be metric spaces. We say that a function $f: M \to N$ is continuous provided that

$$\forall \epsilon > 0 \forall p \in M \exists \delta > 0 \text{ such that } q \in M \text{ and } d_1(p,q) \implies d_2(f(p), f(q)) < \epsilon$$

Example: Consider the metric space \mathbb{R} endowed with the usual metric d(x, y) = |x - y|. Show that $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = 8x^2 - 3x + 2$ is continuous.

Scratch work: Given a fixed p, we want to find a bound on δ such that a q obeying $d(p,q) = |p-q| < \delta$ implies

(*)
$$d(f(p), f(q)) = |f(p) - f(q)| = |(8p^2 - 3p + 2) - (8q^2 - 3q + 2)| < \epsilon.$$

To find the condition on δ , we do algebra. Our algebra has a goal: we only have "control" over |p - q| (δ cannot depend on q – in actuality, δ determines which q's are allowed!!! However, δ often does depend on p). Compute:

$$\begin{split} |(8p^2 - 3p + 2) - (8q^2 - 3q + 2)| &= |8(p^2 - q^2) - 3(p - q)| \\ &= |8(p - q)(p + q) - 3(p - q)| \\ &= |p - q| | 8(q + q) - 3 | \\ &= |p - q| |8(q + p - p + p) - 3| \\ &= |p - q| |8(q - p) + 16p - 3| \\ &prepare for triangle inequality \\ &\leq |p - q| [8|q - p| + |16p - 3|] \\ ▵ inequality \\ &\leq \delta [8\delta + |16p - 3|] \\ &we control |p - q| < \delta \\ & we can choose \delta < 1 leave this one \\ \end{split}$$

Our ultimate goal is to find a condition on δ that causes (*) to occur. If we pick the number δ so that

$$|(8p^2 - 3p + 2) - (8q^2 - 3q + 2)| < \delta \Big[8 + |16p - 3| \Big] < \epsilon_1$$

then it will work. In other words, "solve" for δ in the inequality

$$\delta\Big[8+|16p-3|\Big]<\epsilon.$$

Thus, take

$$\delta < \frac{\epsilon}{8 + |16p - 3|}$$

Proof: Let $\epsilon > 0$ and let $p \in \mathbb{R}$. Choose $0 < \delta < \frac{\epsilon}{8 + |16p - 3|}$. Then if $q \in \mathbb{R}$ with $d(q, p) = |q - p| < \delta$, we compute

$$|(8p^2 - 3p + 2) - (8q^2 - 3q + 2)| \le \delta \Big[8 + |16p - 3| \Big] < \left(\frac{\epsilon}{8 + |16p - 3|}\right) (8 + |16p - 3|) = \epsilon,$$

completing the proof.