continuity: Let $\left(M, d_{1}\right)$ and $\left(N, d_{2}\right)$ be metric spaces. We say that a function $f: M \rightarrow N$ is continuous provided that

$$
\forall \epsilon>0 \forall p \in M \exists \delta>0 \text { such that } q \in M \text { and } d_{1}(p, q) \Longrightarrow d_{2}(f(p), f(q))<\epsilon
$$

Example: Consider the metric space \mathbb{R} endowed with the usual metric $d(x, y)=|x-y|$. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=8 x^{2}-3 x+2$ is continuous.

Scratch work: Given a fixed p, we want to find a bound on δ such that a q obeying $d(p, q)=|p-q|<\delta$ implies

$$
\begin{equation*}
d(f(p), f(q))=|f(p)-f(q)|=\left|\left(8 p^{2}-3 p+2\right)-\left(8 q^{2}-3 q+2\right)\right|<\epsilon \tag{*}
\end{equation*}
$$

To find the condition on δ, we do algebra. Our algebra has a goal: we only have "control" over $|p-q|(\delta$ cannot depend on q - in actuality, δ determines which q 's are allowed!!! However, δ often does depend on p). Compute:

$$
\begin{aligned}
&\left|\left(8 p^{2}-3 p+2\right)-\left(8 q^{2}-3 q+2\right)\right|=\left|8\left(p^{2}-q^{2}\right)-3(p-q)\right| \\
&=|8 \underbrace{(p-q)(p+q)}_{\text {factor }}-3(p-q)| \\
&=\underbrace{|p-q|}_{\text {we control }}|\underbrace{(p-p \text { (why not } p-q ?)}_{\text {want }}| \\
&=|p-q| \mid 8(q+p \underbrace{p-p+p)}_{\text {add zero }}-3 \mid \\
&=|p-q| \underbrace{|8(q-p)+16 p-3|}_{\text {prepare for triangle inequality }} \mid \\
& \underbrace{\leq}_{\text {triangle inequality }}|p-q|[8|q-p|+|16 p-3|] \\
& \underbrace{<}_{\text {we control }|p-q|<\delta} \delta[8 \delta+|16 p-3|] \\
& \text { we can choose } \delta<1 \text { leave this one }
\end{aligned}
$$

Our ultimate goal is to find a condition on δ that causes $(*)$ to occur. If we pick the number δ so that

$$
\left|\left(8 p^{2}-3 p+2\right)-\left(8 q^{2}-3 q+2\right)\right|<\delta[8+|16 p-3| \mid<\epsilon
$$

then it will work. In other words, "solve" for δ in the inequality

$$
\delta[8+|16 p-3|]<\epsilon
$$

Thus, take

$$
\delta<\frac{\epsilon}{8+|16 p-3|}
$$

Proof: Let $\epsilon>0$ and let $p \in \mathbb{R}$. Choose $0<\delta<\frac{\epsilon}{8+|16 p-3|}$. Then if $q \in \mathbb{R}$ with $d(q, p)=|q-p|<\delta$, we compute

$$
\left|\left(8 p^{2}-3 p+2\right)-\left(8 q^{2}-3 q+2\right)\right| \leq \delta[8+|16 p-3|]<\left(\frac{\epsilon}{8+|16 p-3|}\right)(8+|16 p-3|)=\epsilon
$$

completing the proof.

