Series

Recall:

- $\lim_{n\to\infty} p_n = p$ means $\forall \epsilon > 0 \exists N \in \mathbb{N}$ so that if $n \ge N$, then $|p_n p| < \epsilon$.
- Cauchy sequence a sequence (p_n) is called a Cauchy sequence if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ so that n, m > N implies $|p_n p_m| < \epsilon$.
- We saw earlier: "a sequence of real numbers is convergent if and only if it is a Cauchy sequence"

We say that $\sum_{k=0}^{\infty} A_k$ converges to A provided that

$$\lim_{n\to\infty}\sum_{k=0}^n A_k.$$

exists and equals A.

A well-known series: the geometric series is defined for |r| < 1 and obeys

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}.$$

A well-known series: the geometric series is defined for |r| < 1 and obeys

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}.$$

Cauchy Criterion for Convergence ("CCC"): The series $\sum_{k=0}^{\infty} a_k$ converges if and only if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ such that if $n \ge m \ge N$, then $\left|\sum_{k=m}^{n} a_k\right| < \epsilon$

Comparison test

Theorem: If $\sum b_k$ "dominates" $\sum a_k$ in the sense that for all sufficiently large k, $|a_k| \le b_k$, then whenever $\sum b_k$ converges, it follows that $\sum a_k$ converges. **Proof**: Since $\sum b_k$ converges, there is an $N \in \mathbb{N}$ so that if $n \ge m \ge N$, then $\left|\sum_{k=m}^{n} b_{k}\right| < \epsilon$. So, calculate $\left|\sum_{k=m}^{n}a_{k}\right| \leq \sum_{k=m}^{n}|a_{k}| \leq \sum_{k=m}^{n}b_{k} < \epsilon.$

Therefore by **CCC**, $\sum a_k$ converges.

Integral test

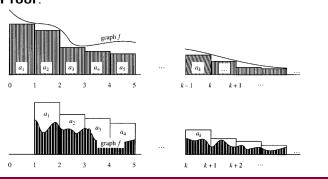
Theorem: Suppose that $\int_0^\infty f(x) dx$ is an improper integral and $\sum a_k$ is a given series. Then

- a) If $|a_k| \le f(x)$ for all sufficiently large k and all $x \in (k 1, k]$, then the convergence of the improper integral implies convergence of the series.
- b) If $|f(x)| \le a_k$ for all sufficiently large k and all $x \in [k, k+1)$, then divergence of the improper integral implies divergence of the series.

Integral test

Theorem: Suppose that $\int_0^\infty f(x) dx$ is an improper integral and $\sum a_k$ is a given series. Then

a) If |a_k| ≤ f(x) for all sufficiently large k and all x ∈ (k − 1, k], then the convergence of the improper integral implies convergence of the series.
b) If |f(x)| ≤ a_k for all sufficiently large k and all x ∈ [k, k + 1), then divergence of the improper integral implies divergence of the series.
Proof:



Corollary: The *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if p > 1 and diverges if $p \le 1$.

Corollary: The *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if p > 1 and diverges if $p \le 1$. **Theorem** (Root test): Consider the series $\sum a_k$. Let $\alpha = \lim_{k \to \infty} \sqrt[k]{|a_k|}$. If $\alpha < 1$, then the series converges. If $\alpha > 1$, then the series diverges. If $\alpha = 1$, the test is inconclusive. **Theorem** (Ratio test): Consider $\sum a_k$. Let $\alpha = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$. If $\alpha < 1$,

then the series converges. If $\alpha > 1$, then the series diverges. If $\alpha = 1$, then the test is inconclusive.

Weird idea: think of a collection of functions obeying a certain property as "points" in a metric space. In this way, we can imagine what it means for a sequence of **functions** to converge to a function.

Weird idea: think of a collection of functions obeying a certain property as "points" in a metric space. In this way, we can imagine what it means for a sequence of **functions** to converge to a function. The easiest idea of function convergence is the following. **Definition** ("pointwise convergence"): Let $f_n: [a, b] \to \mathbb{R}$ be a sequence of functions. We say that f_n converges pointwise to f provided that $\forall x \in [a, b], \lim_{n \to \infty} f_n(x) = f(x)$. In other words: $\forall x \in [a, b] \forall \epsilon > 0 \exists N \in \mathbb{N}$ so that for all $n \ge N$, $|f_n(x) - f(x)| < \epsilon$. In this situation we write $f_n \to f$ or $\lim_{n \to \infty} f_n = f$. Weird idea: think of a collection of functions obeying a certain property as "points" in a metric space. In this way, we can imagine what it means for a sequence of **functions** to converge to a function.

The easiest idea of function convergence is the following.

Definition ("pointwise convergence"): Let $f_n: [a, b] \to \mathbb{R}$ be a sequence of functions. We say that f_n converges pointwise to f provided that $\forall x \in [a, b], \lim_{n \to \infty} f_n(x) = f(x)$. In other words: $\forall x \in [a, b] \forall \epsilon > 0 \exists N \in \mathbb{N}$ so that for all $n \ge N$, $|f_n(x) - f(x)| < \epsilon$. In this situation we write $f_n \to f$ or $\lim_{n \to \infty} f_n = f$.

Definition ("uniform convergence"): Let $f_n: [a, b] \to \mathbb{R}$ be a sequence of functions. We say that f_n converges uniformly to f provided that $\forall \epsilon > 0 \exists N \in \mathbb{N}$ so that for all $n \ge N$ and $x \in [a, b]$, $|f_n(x) - f(x)| < \epsilon$. In this situation, we write $f_n \rightrightarrows f$ or unif $\lim_{n \to \infty} f_n = f$.

Intuition: Draw an " ϵ -tube" around the graph of f. Uniform convergence means that, for sufficiently large n, the graph of f_n lies entirely inside the ϵ -tube.

Example: Define $f_n: (0,1) \to \mathbb{R}$ by $f_n(x) = x^n$. For each $x \in (0,1)$, $\lim_{n \to \infty} f_n(x) =$

Intuition: Draw an " ϵ -tube" around the graph of f. Uniform convergence means that, for sufficiently large n, the graph of f_n lies entirely inside the ϵ -tube.

Example: Define $f_n: (0,1) \to \mathbb{R}$ by $f_n(x) = x^n$. For each $x \in (0,1)$, $\lim_{n \to \infty} f_n(x) = 0$. Do these functions converge uniformly (to the zero

function)?

Intuition: Draw an " ϵ -tube" around the graph of f. Uniform convergence means that, for sufficiently large n, the graph of f_n lies entirely inside the ϵ -tube.

Example: Define $f_n: (0,1) \to \mathbb{R}$ by $f_n(x) = x^n$. For each $x \in (0,1)$, $\lim_{n \to \infty} f_n(x) = 0$. Do these functions converge uniformly (to the zero function)? No! Take $\epsilon = \frac{1}{10}$. Where does the point $x_n = \sqrt[n]{\frac{1}{2}}$ map to under f_n ?

This example shows that there are functions that are pointwise convergence but not uniformly convergent. Are there functions that are uniformly convergent but not pointwise convergent?