
Series

Recall:

lim
n→∞

pn = p means ∀ε > 0∃N ∈ N so that if n ≥ N, then |pn− p| < ε.

Cauchy sequence a sequence (pn) is called a Cauchy sequence if
∀ε > 0∃N ∈ N so that n,m > N implies |pn − pm| < ε.

We saw earlier: “a sequence of real numbers is convergent if and only
if it is a Cauchy sequence”

We say that
∞∑
k=0

Ak converges to A provided that

lim
n→∞

n∑
k=0

Ak .

exists and equals A.
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Series

- Cauchy condition

A well-known series: the geometric series is defined for |r | < 1 and obeys

∞∑
k=0

rk =
1

1− r
.

Cauchy Criterion for Convergence (“CCC”): The series
∞∑
k=0

ak

converges if and only if ∀ε > 0∃N ∈ N such that if n ≥ m ≥ N, then∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε

26 March 2018 2 / 7



Series - Cauchy condition

A well-known series: the geometric series is defined for |r | < 1 and obeys

∞∑
k=0

rk =
1

1− r
.

Cauchy Criterion for Convergence (“CCC”): The series
∞∑
k=0

ak

converges if and only if ∀ε > 0∃N ∈ N such that if n ≥ m ≥ N, then∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε

26 March 2018 2 / 7



Comparison test

Theorem: If
∑

bk “dominates”
∑

ak in the sense that for all

sufficiently large k, |ak | ≤ bk , then whenever
∑

bk converges, it follows

that
∑

ak converges.

Proof: Since
∑

bk converges, there is an N ∈ N so that if n ≥ m ≥ N,

then

∣∣∣∣∣
n∑

k=m

bk

∣∣∣∣∣ < ε. So, calculate

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
n∑

k=m

|ak | ≤
n∑

k=m

bk < ε.

Therefore by CCC,
∑

ak converges. �
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Integral test

Theorem: Suppose that

∫ ∞

0
f (x)dx is an improper integral and

∑
ak is

a given series. Then

a) If |ak | ≤ f (x) for all sufficiently large k and all x ∈ (k − 1, k], then the
convergence of the improper integral implies convergence of the series.

b) If |f (x)| ≤ ak for all sufficiently large k and all x ∈ [k , k + 1), then
divergence of the improper integral implies divergence of the series.

Proof:
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Other tests

Corollary: The p-series
∞∑
k=1

1

kp
converges if p > 1 and diverges if p ≤ 1.

Theorem (Root test): Consider the series
∑

ak . Let α = lim
k→∞

k
√
|ak |. If

α < 1, then the series converges. If α > 1, then the series diverges. If
α = 1, the test is inconclusive.

Theorem (Ratio test): Consider
∑

ak . Let α = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣. If α < 1,

then the series converges. If α > 1, then the series diverges. If α = 1, then
the test is inconclusive.
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Function spaces

Weird idea: think of a collection of functions obeying a certain property as
“points” in a metric space. In this way, we can imagine what it means for
a sequence of functions to converge to a function.

The easiest idea of function convergence is the following.
Definition (“pointwise convergence”): Let fn : [a, b]→ R be a sequence
of functions. We say that fn converges pointwise to f provided that
∀x ∈ [a, b], lim

n→∞
fn(x) = f (x). In other words: ∀x ∈ [a, b]∀ε > 0∃N ∈ N

so that for all n ≥ N, |fn(x)− f (x)| < ε. In this situation we write fn → f
or lim

n→∞
fn = f .

Definition (“uniform convergence”): Let fn : [a, b]→ R be a sequence of
functions. We say that fn converges uniformly to f provided that
∀ε > 0∃N ∈ N so that for all n ≥ N and x ∈ [a, b], |fn(x)− f (x)| < ε. In
this siuation, we write fn ⇒ f or unif lim

n→∞
fn = f .
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What’s the difference?

Intuition: Draw an “ε-tube” around the graph of f . Uniform convergence
means that, for sufficiently large n, the graph of fn lies entirely inside the
ε-tube.
Example: Define fn : (0, 1)→ R by fn(x) = xn. For each x ∈ (0, 1),
lim
n→∞

fn(x) =

0. Do these functions converge uniformly (to the zero

function)? No! Take ε =
1

10
. Where does the point xn = n

√
1
2 map to

under fn?
This example shows that there are functions that are pointwise
convergence but not uniformly convergent. Are there functions that are
uniformly convergent but not pointwise convergent?
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