
Homework 9 — MATH 4590 Spring 2018

1. Use induction to prove that

1 + r + r2 + . . .+ rn =
1− rn+1

1− r
.

Proof : The case n = 1 says 1 + r =
1− r2

1− r
. Since 1− r2 = (1− r)(1 + r) we

get
(1− r)(1 + r)

1− r
= 1 + r, completing this case. Now assume it holds for

n = N , i.e. assume

(∗) 1 + r + r2 + . . .+ rN =
1− rN+1

1− r
.

We now want to show it holds, i.e.

Goal: 1 + r + r2 + . . .+ rN + rN+1 =
1− rN+2

1− r
.

Start with the left-hand side:

1 + r + . . .+ rN + rN+1 (∗)
=

1− rN+1

1− r
+ rN+1

=
1− rN+1

1− r
+
rN+1 − rN+2

1− r
=

1− rN+2

1− r
,

completing the proof. �
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2. Define

F (x) =

{
0, x < 0

(n− 1)x− (n− 1)n

2
, x ∈ [n− 1, n), n ∈ {1, 2, 3, . . .}

a.) Sketch this function on [0, 5]. Is F continuous?

Solution:
1

5

9

14

b.) Find F ′(x) at places which have a derivative. Add a sketch for F ′ to
your sketch in part a.).
Solution:

F ′(x) =



0, x < 1
1, 1 < x < 2
2, 2 < x < 3
3, 3 < x < 4
...

...
n, n < x < n+ 1
...

...

Which is identical to bxc for any x 6∈ Z. (note: it is ok to not equal bxc
at x ∈ Z because Z is a zero set and so it does not contribute to the
integral in part c)!!)

c.) Use the above part to evaluate

∫ b

a

bxcdx, where bxc denotes the floor

function (i.e. bxc is the greatest integer ≤ x)

Solution: We get, since bxc almost everywhere
= F ′(x),∫ b

a

bxcdx =

∫ b

a

F ′(x)dx = F (b)− F (a),
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where F is the function defined in this question.

3. Prove that if Z1 and Z2 are zero sets, then Z1 ∪ Z2 is a zero set.
NOTE : Recall that a set Z is called a zero set provided that for any ε > 0
there exists a sequence of interval (αn, βn) so that for any ξ ∈ Z,
ξ ∈ (αj , βj) for some j (this means the intervals “cover” Z) and the sum of
the lengths of these intervals is < ε, i.e.

∞∑
n=1

length
(

(αn, βn)
)

=

∞∑
n=1

βn − αn < ε.

Proof : Suppose that Z1 and Z2 are zero sets. Let ε > 0. We need to show
that Z1 ∪ Z2 is also a zero set. Since Z1 is a zero set, there is a sequence of
intervals (αn, βn) covering Z1 so that

∞∑
n=1

βn − αn <
ε

2
.

Similarly, there is a different sequence of intervals (γn, δn) that cover Z2 so
that

∞∑
n=1

δn − γn <
ε

2
.

Define a new sequence of intervals

(φn, ψn) =

{
(αn, βn), n = 1, 3, 5, 7, . . .
(γn, δn), n = 2, 4, 6, 8, . . . .

Then we observe that the sequence (φn, ψn) covers Z1 ∪ Z2 and

∞∑
n=1

ψn−φn =

 ∑
n∈{1,3,5,7,...}

βn − αn

+

 ∑
n∈{2,4,6,8,...}

δn − γn

 <
ε

2
+
ε

2
= ε,

proving that Z1 ∪ Z2 is a zero set. �

4. Show that any two antiderivatives of a function f differ by a constant.
(hint: use the “antiderivative theorem”)
Solution: Let F1 and F2 be any two antiderivatives of f . By the
antiderivative theorem, each of these differ from the indefinite integral

I =

∫ x

a

f(t)dt by a constant, say F1 = I +C1 and F2 = I +C2. Now we see

that
F1 − F2 = (I + C1)− (I + C2) = C1 − C2,

or in other words, F1 and F2 differ by a constant, as was to be shown.

3



5. If fn ⇒ f and gn ⇒ g on A, prove that fn + gn ⇒ f + g on A.
Solution: Let ε > 0. Since fn ⇒ f , we know there exists Nf so that for all
n ≥ Nf and ∀x ∈ A,

|fn(x)− f(x)| < ε

2
.

Similarly, since gn ⇒ g, we know there exists Ng so that for all n ≥ Ng and
∀x ∈ A,

|gn(x)− g(x)| < ε

2
.

Therefore if we choose N = max{Nf , Ng} and let n ≥ N , we may calculate
for all x ∈ A,

|(fn(x) + gn(x))− (f(x) + g(x))| = |(fn(x)− f(x)) + (gn(x)− g(x))|
≤ |fn(x)− f(x)|+ |gn(x)− g(x)|

<
ε

2
+
ε

2
= ε,

completing the proof. �
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