Homework 9 — MATH 4590 Spring 2018

1. Use induction to prove that

$$1 + r + r^2 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r}.$$

Proof: The case n=1 says $1+r=\frac{1-r^2}{1-r}$. Since $1-r^2=(1-r)(1+r)$ we get $\frac{(1-r)(1+r)}{1-r}=1+r$, completing this case. Now assume it holds for n=N, i.e. assume

(*)
$$1 + r + r^2 + \ldots + r^N = \frac{1 - r^{N+1}}{1 - r}.$$

We now want to show it holds, i.e.

Goal:
$$1 + r + r^2 + \ldots + r^N + r^{N+1} = \frac{1 - r^{N+2}}{1 - r}$$
.

Start with the left-hand side:

$$\begin{aligned} 1+r+\ldots+r^N+r^{N+1} &\stackrel{(*)}{=} \frac{1-r^{N+1}}{1-r} + r^{N+1} \\ &= \frac{1-r^{N+1}}{1-r} + \frac{r^{N+1}-r^{N+2}}{1-r} \\ &= \frac{1-r^{N+2}}{1-r}, \end{aligned}$$

completing the proof. \blacksquare

2. Define

$$F(x) = \begin{cases} 0, & x < 0 \\ (n-1)x - \frac{(n-1)n}{2}, & x \in [n-1,n), n \in \{1,2,3,\ldots\} \end{cases}$$

a.) Sketch this function on [0, 5]. Is F continuous?

Solution: .

b.) Find F'(x) at places which have a derivative. Add a sketch for F' to your sketch in part a.). Solution:

$$F'(x) = \begin{cases} 0, & x < 1 \\ 1, & 1 < x < 2 \\ 2, & 2 < x < 3 \\ 3, & 3 < x < 4 \\ \vdots & \vdots \\ n, & n < x < n + 1 \\ \vdots & \vdots & \vdots \end{cases}$$

Which is identical to $\lfloor x \rfloor$ for any $x \notin \mathbb{Z}$. (note: it is ok to not equal $\lfloor x \rfloor$ at $x \in \mathbb{Z}$ because \mathbb{Z} is a zero set and so it does not contribute to the integral in part c)!!)

c.) Use the above part to evaluate $\int_a^b \lfloor x \rfloor dx$, where $\lfloor x \rfloor$ denotes the floor function (i.e. $\lfloor x \rfloor$ is the greatest integer $\leq x$)

Solution: We get, since $\lfloor x \rfloor$ almost everywhere F'(x),

$$\int_a^b \lfloor x \rfloor \mathrm{d}x = \int_a^b F'(x) \mathrm{d}x = F(b) - F(a),$$

where F is the function defined in this question.

3. Prove that if Z_1 and Z_2 are zero sets, then $Z_1 \cup Z_2$ is a zero set. NOTE: Recall that a set Z is called a zero set provided that for any $\epsilon > 0$ there exists a sequence of interval (α_n, β_n) so that for any $\xi \in Z$, $\xi \in (\alpha_j, \beta_j)$ for some j (this means the intervals "cover" Z) and the sum of the lengths of these intervals is $< \epsilon$, i.e.

$$\sum_{n=1}^{\infty} \operatorname{length}((\alpha_n, \beta_n)) = \sum_{n=1}^{\infty} \beta_n - \alpha_n < \epsilon.$$

Proof: Suppose that Z_1 and Z_2 are zero sets. Let $\epsilon > 0$. We need to show that $Z_1 \cup Z_2$ is also a zero set. Since Z_1 is a zero set, there is a sequence of intervals (α_n, β_n) covering Z_1 so that

$$\sum_{n=1}^{\infty} \beta_n - \alpha_n < \frac{\epsilon}{2}.$$

Similarly, there is a different sequence of intervals (γ_n, δ_n) that cover Z_2 so that

$$\sum_{n=1}^{\infty} \delta_n - \gamma_n < \frac{\epsilon}{2}.$$

Define a new sequence of intervals

$$(\phi_n, \psi_n) = \begin{cases} (\alpha_n, \beta_n), & n = 1, 3, 5, 7, \dots \\ (\gamma_n, \delta_n), & n = 2, 4, 6, 8, \dots \end{cases}$$

Then we observe that the sequence (ϕ_n, ψ_n) covers $Z_1 \cup Z_2$ and

$$\sum_{n=1}^{\infty} \psi_n - \phi_n = \left(\sum_{n \in \{1,3,5,7,\ldots\}} \beta_n - \alpha_n\right) + \left(\sum_{n \in \{2,4,6,8,\ldots\}} \delta_n - \gamma_n\right) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

proving that $Z_1 \cup Z_2$ is a zero set. \blacksquare

4. Show that any two antiderivatives of a function f differ by a constant. (hint: use the "antiderivative theorem")

Solution: Let F_1 and F_2 be any two antiderivatives of f. By the antiderivative theorem, each of these differ from the indefinite integral $I = \int_a^x f(t) dt$ by a constant, say $F_1 = I + C_1$ and $F_2 = I + C_2$. Now we see that

$$F_1 - F_2 = (I + C_1) - (I + C_2) = C_1 - C_2,$$

or in other words, F_1 and F_2 differ by a constant, as was to be shown.

5. If $f_n \Rightarrow f$ and $g_n \Rightarrow g$ on A, prove that $f_n + g_n \Rightarrow f + g$ on A. Solution: Let $\epsilon > 0$. Since $f_n \Rightarrow f$, we know there exists N_f so that for all $n \geq N_f$ and $\forall x \in A$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}.$$

Similarly, since $g_n \rightrightarrows g$, we know there exists N_g so that for all $n \geq N_g$ and $\forall x \in A$,

$$|g_n(x) - g(x)| < \frac{\epsilon}{2}.$$

Therefore if we choose $N = \max\{N_f, N_g\}$ and let $n \geq N$, we may calculate for all $x \in A$,

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| = |(f_n(x) - f(x)) + (g_n(x) - g(x))| \leq |f_n(x) - f(x)| + |g_n(x) - g(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

completing the proof. \blacksquare