1. Use induction to prove that

$$
1+r+r^{2}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

Proof: The case $n=1$ says $1+r=\frac{1-r^{2}}{1-r}$. Since $1-r^{2}=(1-r)(1+r)$ we get $\frac{(1-r)(1+r)}{1-r}=1+r$, completing this case. Now assume it holds for $n=N$, i.e. assume

$$
(*) \quad 1+r+r^{2}+\ldots+r^{N}=\frac{1-r^{N+1}}{1-r}
$$

We now want to show it holds, i.e.

$$
\text { Goal: } 1+r+r^{2}+\ldots+r^{N}+r^{N+1}=\frac{1-r^{N+2}}{1-r}
$$

Start with the left-hand side:

$$
\begin{aligned}
1+r+\ldots+r^{N}+r^{N+1} & \stackrel{(*)}{=} \frac{1-r^{N+1}}{1-r}+r^{N+1} \\
& =\frac{1-r^{N+1}}{1-r}+\frac{r^{N+1}-r^{N+2}}{1-r} \\
& =\frac{1-r^{N+2}}{1-r}
\end{aligned}
$$

completing the proof.
2. Define

$$
F(x)= \begin{cases}0, & x<0 \\ (n-1) x-\frac{(n-1) n}{2}, & x \in[n-1, n), n \in\{1,2,3, \ldots\}\end{cases}
$$

a.) Sketch this function on $[0,5]$. Is $F$ continuous?

b.) Find $F^{\prime}(x)$ at places which have a derivative. Add a sketch for $F^{\prime}$ to your sketch in part a.).
Solution:

$$
F^{\prime}(x)=\left\{\begin{array}{lc}
0, & x<1 \\
1, & 1<x<2 \\
2, & 2<x<3 \\
3, & 3<x<4 \\
\vdots & \vdots \\
n, & n<x<n+1 \\
\vdots & \vdots
\end{array}\right.
$$

Which is identical to $\lfloor x\rfloor$ for any $x \notin \mathbb{Z}$. (note: it is ok to not equal $\lfloor x\rfloor$ at $x \in \mathbb{Z}$ because $\mathbb{Z}$ is a zero set and so it does not contribute to the integral in part c)!!)
c.) Use the above part to evaluate $\int_{a}^{b}\lfloor x\rfloor \mathrm{d} x$, where $\lfloor x\rfloor$ denotes the floor function (i.e. $\lfloor x\rfloor$ is the greatest integer $\leq x$ )


$$
\int_{a}^{b}\lfloor x\rfloor \mathrm{d} x=\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a)
$$

where $F$ is the function defined in this question.
3. Prove that if $Z_{1}$ and $Z_{2}$ are zero sets, then $Z_{1} \cup Z_{2}$ is a zero set.

NOTE: Recall that a set $Z$ is called a zero set provided that for any $\epsilon>0$ there exists a sequence of interval $\left(\alpha_{n}, \beta_{n}\right)$ so that for any $\xi \in Z$, $\xi \in\left(\alpha_{j}, \beta_{j}\right)$ for some $j$ (this means the intervals "cover" $\left.Z\right)$ and the sum of the lengths of these intervals is $<\epsilon$, i.e.

$$
\sum_{n=1}^{\infty} \operatorname{length}\left(\left(\alpha_{n}, \beta_{n}\right)\right)=\sum_{n=1}^{\infty} \beta_{n}-\alpha_{n}<\epsilon
$$

Proof: Suppose that $Z_{1}$ and $Z_{2}$ are zero sets. Let $\epsilon>0$. We need to show that $Z_{1} \cup Z_{2}$ is also a zero set. Since $Z_{1}$ is a zero set, there is a sequence of intervals $\left(\alpha_{n}, \beta_{n}\right)$ covering $Z_{1}$ so that

$$
\sum_{n=1}^{\infty} \beta_{n}-\alpha_{n}<\frac{\epsilon}{2}
$$

Similarly, there is a different sequence of intervals $\left(\gamma_{n}, \delta_{n}\right)$ that cover $Z_{2}$ so that

$$
\sum_{n=1}^{\infty} \delta_{n}-\gamma_{n}<\frac{\epsilon}{2}
$$

Define a new sequence of intervals

$$
\left(\phi_{n}, \psi_{n}\right)= \begin{cases}\left(\alpha_{n}, \beta_{n}\right), & n=1,3,5,7, \ldots \\ \left(\gamma_{n}, \delta_{n}\right), & n=2,4,6,8, \ldots\end{cases}
$$

Then we observe that the sequence $\left(\phi_{n}, \psi_{n}\right)$ covers $Z_{1} \cup Z_{2}$ and

$$
\sum_{n=1}^{\infty} \psi_{n}-\phi_{n}=\left(\sum_{n \in\{1,3,5,7, \ldots\}} \beta_{n}-\alpha_{n}\right)+\left(\sum_{n \in\{2,4,6,8, \ldots\}} \delta_{n}-\gamma_{n}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,
$$

proving that $Z_{1} \cup Z_{2}$ is a zero set.
4. Show that any two antiderivatives of a function $f$ differ by a constant.
(hint: use the "antiderivative theorem")
Solution: Let $F_{1}$ and $F_{2}$ be any two antiderivatives of $f$. By the antiderivative theorem, each of these differ from the indefinite integral $I=\int_{a}^{x} f(t) \mathrm{d} t$ by a constant, say $F_{1}=I+C_{1}$ and $F_{2}=I+C_{2}$. Now we see that

$$
F_{1}-F_{2}=\left(I+C_{1}\right)-\left(I+C_{2}\right)=C_{1}-C_{2},
$$

or in other words, $F_{1}$ and $F_{2}$ differ by a constant, as was to be shown.
5. If $f_{n} \rightrightarrows f$ and $g_{n} \rightrightarrows g$ on $A$, prove that $f_{n}+g_{n} \rightrightarrows f+g$ on $A$.

Solution: Let $\epsilon>0$. Since $f_{n} \rightrightarrows f$, we know there exists $N_{f}$ so that for all $n \geq N_{f}$ and $\forall x \in A$,

$$
\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2}
$$

Similarly, since $g_{n} \rightrightarrows g$, we know there exists $N_{g}$ so that for all $n \geq N_{g}$ and $\forall x \in A$,

$$
\left|g_{n}(x)-g(x)\right|<\frac{\epsilon}{2}
$$

Therefore if we choose $N=\max \left\{N_{f}, N_{g}\right\}$ and let $n \geq N$, we may calculate for all $x \in A$,

$$
\begin{array}{ll}
\left|\left(f_{n}(x)+g_{n}(x)\right)-(f(x)+g(x))\right| & =\left|\left(f_{n}(x)-f(x)\right)+\left(g_{n}(x)-g(x)\right)\right| \\
& \leq\left|f_{n}(x)-f(x)\right|+\left|g_{n}(x)-g(x)\right| \\
<\frac{\epsilon}{2}+\frac{\epsilon}{2} & \\
=\epsilon, &
\end{array}
$$

completing the proof.

