1. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(t)-f(x)| \leq|t-x|^{2}$ for all $t, x \in \mathbb{R}$.

Prove that f is a constant function.
Proof: Let $\epsilon>0$ and choose $0<\delta<\epsilon$. Then rearranging the given inequality implies

$$
\left|\frac{f(t)-f(x)}{t-x}\right| \leq|t-x|
$$

Taking the limit as $t \rightarrow x$ implies

$$
\lim _{t \rightarrow x}\left|\frac{f(t)-f(x)}{t-x}\right| \leq \lim _{t \rightarrow x}|t-x|
$$

yielding

$$
\left|f^{\prime}(x)\right| \leq|0| .
$$

Since $\left|f^{\prime}(x)\right| \geq 0$, we must conclude that $f^{\prime}(x)=0$, in other words, f is a constant function.
2. (a) Draw the graph of a continuous function defined on $[0,1]$ that is differentiable on $(0,1)$, but not at the endpoints.
(hint: take inspiration from the graph of the following function, which is continuous on \mathbb{R} but not differentiable at zero:
$\left.f(x)=\left\{\begin{array}{ll}0, & x=0 \\ x \sin \left(\frac{1}{x}\right), & x \neq 0\end{array}\right\}\right)$

(b) Can you find a formula for such a function? (not necessarily the one you drew)
(c) Does the Mean Value Theorem apply to such a function? Why or why not?
Solution: It does apply. MVT would only require differentiability in $(0,1)$ and continuity on $[0,1]$, which is satisfied by such a function.
3. Assume that the functions f and g are smooth (i.e. infinitely
differentiable). Prove the Leibniz product rule: for any $r \in\{1,2,3, \ldots\}$,

$$
(f \cdot g)^{(r)}(x)=\sum_{k=0}^{r}\binom{r}{k} f^{(k)}(x) g^{r-k}(x)
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
(hint: use induction)
Proof: The case $r=0$ is true since it says

$$
(f \cdot g)^{(r)}(x)=\sum_{k=0}^{0}\binom{r}{k} f^{(k)}(x) g^{(r-k)}(x)
$$

i.e.

$$
(f \cdot g)(x)=f(x) g(x)
$$

Now assume the formula holds for $r=N$. Now compute

$$
\begin{aligned}
& (f \cdot g)^{(N+1)}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}(f \cdot g)^{(N)}(x) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x} \sum_{k=0}^{N}\binom{N}{k} f^{(k)}(x) g^{(N-k)}(x) \\
& \stackrel{\text { product rule }}{=} \sum_{k=0}^{N}\binom{N}{k}\left[f^{(k+1)}(x) g^{(N-k)}(x)+f^{(k)}(x) g^{(N-k+1)}(x)\right] \\
& =\left(\sum_{k=0}^{N}\binom{N}{k} f^{(k+1)}(x) g^{(N-k)}(x)\right)+\left(\sum_{k=0}^{N}\binom{N}{k} f^{(k)}(x) g^{(N-k+1)}(x)\right) \\
& \stackrel{\text { reindex }}{=}\left(\sum_{k=1}^{N+1}\binom{N}{k-1} f^{(k)}(x) g^{(N-k+1)}(x)\right)+\left(\sum_{k=0}^{N}\binom{N}{k} f^{(k)}(x) g^{(N-k+1)}(x)\right) \\
& =\underbrace{\binom{N}{N} f^{(N+1)}(x) g^{(0)}(x)}_{k=N+1 \text { term }}+\left(\sum_{k=1}^{N}\binom{N}{k-1} f^{(k)}(x) g^{(N-k+1)}(x)\right) \\
& +\underbrace{\binom{N}{0} f^{(0)}(x) g^{(N+1)}}_{k=0 \text { term }}+\left(\sum_{k=1}^{N}\binom{N}{k} f^{(k)}(x) g^{(N-k+1)}(x)\right) .
\end{aligned}
$$

Notice here that $\binom{N}{N}=1$ and $\binom{N}{0}=1$. Combining the sums shows
$(*)(f \cdot g)^{(N+1)}(x)=f^{(0)}(x) g^{(N+1)}+\left(\sum_{k=1}^{N}\left[\binom{N}{k-1}+\binom{N}{k}\right] f^{(k)}(x) g^{(N-k+1)}(x)\right)+f^{(N+1)}(x) g^{(0)}(x)$

Now calculate

$$
\begin{aligned}
\binom{N}{k-1}+\binom{N}{k} & =\frac{N!}{(k-1)!(N-k+1)!}+\frac{N!}{k!(N-k)!} \\
& =\frac{N!}{(k-1)!(N-k)!}\left(\frac{1}{N-k+1}+\frac{1}{k}\right) \\
& =\frac{N!}{(k-1)!(N-k)!}\left(\frac{N+1}{k(N-k+1)}\right) \\
& =\frac{(N+1)!}{k!(N-k+1)!} \\
& =\binom{N+1}{k}
\end{aligned}
$$

This shows that (*) is actually
$(f \cdot g)^{(N+1)}(x)=f^{(0)}(x) g^{(N+1)}(x)+\left(\sum_{k=1}^{N}\binom{N+1}{k} f^{(k)}(x) g^{(N-k+1)}(x)\right)+f^{(N+1)}(x) g^{(0)}(x)$,
and so since $\binom{N+1}{0}=1=\binom{N+1}{N+1}$ we may write $(*)$ as

$$
(f \cdot g)^{N+1}(x)=\sum_{k=1}^{N+1}\binom{N+1}{k} f^{(k)}(x) g^{(N-k+1)}(x)
$$

completing the proof.
4. Recall the r th order Taylor polynomial of a r-times differentiable function $f(x)$ is given by

$$
P(h)=\sum_{k=0}^{r} \frac{f^{(k)}(x)}{k!} h^{k}
$$

Also recall that the remainder $R(h)$ is given by

$$
R(h)=f(x+h)-P(h),
$$

and (assuing f is $r+1$-times differentiable) that the Taylor Approximation Theorem (part c) says that there is some $\theta \in(0, h)$ so that

$$
R(h)=\frac{f^{(r+1)}(\theta)}{(r+1)!} h^{r+1} .
$$

We will investigate the following question: what is the max possible error that a 5th order Taylor polynomial for the function $f(x)=\sin (x)$ centered at zero may have in approximating $\sin \left(\frac{1}{2}\right)$?
(a) Find the 5th order Taylor polynomial of $f(x)=\sin (x)$.

Solution: Calculate $f^{\prime}(x)=\cos (x), f^{\prime \prime}(x)=-\sin (x)$, $f^{\prime \prime \prime}(x)=-\cos (x), f^{(4)}(x)=\sin (x)$, and $f^{(5)}(x)=\cos (x)$. Therefore the 5 th order Taylor polynomial is

$$
\begin{aligned}
P(h) & =\sum_{k=0}^{5} \frac{f^{(k)}(x)}{k!} h^{k} \\
& =\sin (x)+\cos (x) h-\frac{\sin (x)}{2} h^{2}-\frac{\cos (x)}{6} h^{3}+\frac{\sin (x)}{24} h^{4}+\frac{\cos (x)}{120} h^{5}
\end{aligned}
$$

(b) Set $x=0$ in the resulting formula from above (this "centers" the Taylor polynomial near x).
Solution: At $x=0$ we get

$$
P(h)=0+h-0-\frac{h^{3}}{6}+0+\frac{h^{5}}{120}=h-\frac{h^{3}}{6}+\frac{h^{5}}{120} .
$$

(c) Use the Taylor Approximation Theorem (part c) to write a formula (in terms of θ) for $R\left(\frac{1}{2}\right)$ (with $x=0$).
Solution: Calculate

$$
R(h)=\frac{f^{(6)}(\theta)}{6!} h^{r+1}
$$

and since $f^{(6)}(x)=-\sin (x)$ this turns into

$$
R\left(\frac{1}{2}\right)=\frac{-\sin (x)}{6!}\left(\frac{1}{2}\right)^{6}
$$

(d) Find a number $\xi \in \mathbb{R}$ such that $\left|R\left(\frac{1}{2}\right)\right|<\xi$, where ξ does not depend on θ (with $x=0$).
Solution: Since $|-\sin (x)| \leq 1$ for all x, we can conclude

$$
\left|R\left(\frac{1}{2}\right)\right| \leq \frac{1}{2^{6} 6!} \approx 0.0000217
$$

5. Define $f(x)= \begin{cases}x^{2}, & x<0 \\ x+x^{2}, & x \geq 0 .\end{cases}$

Differentiation gives $f^{\prime \prime}(x)=2$. This is bogus. Why? (hint: draw a picture of f and its derivative)
Solution: The first derivative of f is

$$
f^{\prime}(x)= \begin{cases}2 x, & x<0 \\ 1+2 x, & x \geq 0\end{cases}
$$

But we see that the function $f^{\prime}(x)$ is not continuous at $x=0$ - from the left of 0 it approaches the height of 0 but from the right it approaches the height 1 . Since any differentiable function is continuous, we may conclude that f^{\prime} is not differentiable since it is not continuous.

