MATH 3503 - EXAM 3 - FALL 2018 SOLUTION

26 October 2018
Instructor: Tom Cuchta

Instructions:

- Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must show work backing up your claim. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- Good luck!

1. (12 points) Consider the function $f(x, y)=x^{2}+e^{x y}$ with $x=2 t+s$ and $y=e^{s}$. Use the chain rule to compute the derivative $\frac{\partial f}{\partial s}$.
Solution: Calculate

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& =\left(2 x+y e^{x y}\right)(1)+\left(x e^{x y}\right)\left(e^{s}\right) \\
& =\left(4 t+2 s+e^{s}\left(e^{(2 t+s) e^{s}}\right)\right)+\left((2 t+s) e^{(2 t+s) e^{s}} e^{s}\right)
\end{aligned}
$$

2. (20 points) Consider the function $f(x, y)=\sin \left(x^{2} y\right)$.
(a) (5 points) Compute the gradient of f.

Solution: Calculate

$$
\nabla f=\left\langle\frac{\partial}{\partial x} \sin \left(x^{2} y\right), \frac{\partial}{\partial y} \sin \left(x^{2} y\right)\right\rangle=\left\langle 2 x y \cos \left(x^{2} y\right), x^{2} \cos \left(x^{2} y\right)\right\rangle
$$

(b) (5 points) Compute the directional derivative of f at the point $(1,2)$ in the direction of the vector $\vec{v}=\langle 1,1\rangle$.
Solution: First normalize \vec{v} to get

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{\langle 1,1\rangle}{\sqrt{1+1}}=\left\langle\frac{2}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right\rangle .
$$

Now we may compute the directional derivative:

$$
\begin{aligned}
D_{\vec{u}} f(1,2) & =\nabla f(1,2) \cdot \vec{u} \\
& =\langle 4 \cos (2), \cos (2)\rangle \cdot\left\langle\frac{2}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right\rangle \\
& =\frac{8 \cos (2)}{\sqrt{2}}+\frac{3 \cos (2)}{\sqrt{2}} \\
& =\frac{11 \cos (2)}{\sqrt{2}} \approx-3.23
\end{aligned}
$$

(c) (5 points) In what direction does f increase the fastest from the point $(1,2)$?

Solution: It increases the fastest in the direction of the gradient, i.e. $\nabla f(1,2)=\langle 4 \cos (2), \cos (2)\rangle$.
(d) (5 points) What is the maximum rate of change of f at the point $(1,2)$?

Solution: The maximum rate of change is given by the magnitude of the gradient, i.e.

$$
\|\nabla f(1,2)\|=\|\langle 4 \cos (2), \cos (2)\rangle\|=16 \cos ^{2}(2)+\cos ^{2}(2)=17 \cos ^{2}(2) \approx 2.944
$$

3. (16 points) Consider the function $f(x, y)=x^{3}+6 x y+3 y^{2}-9 x$.
(a) (8 points) Compute f_{x} and f_{y}.

Solution: Compute

$$
f_{x}=3 x^{2}+6 y-9
$$

and

$$
f_{y}=6 x+6 y
$$

(b) (8 points) Use your answer to (a) to find the critical points of f.

Solution: Find the critical points by finding all solutions of the system of equations

$$
\begin{align*}
& f_{x}=3 x^{2}+6 y-9 \stackrel{\mathrm{SET}}{=} 0 \tag{i}\\
& f_{y}=6 x+6 y \stackrel{\mathrm{SET}}{=} 0 \tag{ii}
\end{align*}
$$

From (ii) we see that $x=-y$. Plugging this into (i) yields

$$
3(-y)^{2}+6 y-9=0
$$

i.e.

$$
3 y^{2}+6 y-9=0
$$

Dividing by 3 yields

$$
y^{2}+2 y-3=0
$$

Solving the quadratic yields solutions $y=-3$ and $y=1$. Therefore using the fact that $x=-y$ we see that the pairs of critical points we have are $(x, y)=(3,-3)$ and $(x, y)=(-1,1)$.
4. (16 points) The function $f(x, y)=3 x^{2}+6 x y+2 y^{3}+12 x-24 y$ has critical points at $(0,-2)$ and $(-5,3)$ (you do NOT need to verify this).
(a) (8 points) Write down D.

Solution: First calculate

$$
\begin{gathered}
f_{x}=6 x+6 y+12, \\
f_{y}=6 x+6 y^{2}-24, \\
f_{x x}=6, \\
f_{y y}=12 y,
\end{gathered}
$$

and

$$
f_{x y}=6 .
$$

Therefore

$$
D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=72 y-36
$$

(b) (8 points) Use the D you found in (a) to classify each critical point as the location of a local minimum, local maximum, a saddle point, or state that there is not enough information to classify it ("inconclusive").
Solution:
Analyze (0, - 2)
Calculate

$$
D(0,-2)=72(-2)-36=-288-36<0
$$

hence there is a saddle point at $(x, y)=(0,-2)$.
Analyze ($-5,3$)
Calculate

$$
D(-5,3)=72(3)-36=216-36>0
$$

and

$$
f_{x x}(-5,3)=6>0
$$

hence there is a local minimum at $(x, y)=(-5,3)$.
5. Compute the following double integral: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{x}^{\sqrt{\sin (x)}} y \mathrm{~d} y \mathrm{~d} x$.

Solution: Calculate

$$
\begin{aligned}
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{x}^{\sqrt{\sin (x)}} y \mathrm{~d} y \mathrm{~d} x & =\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \underbrace{(\sqrt{\sin (x)})^{2}}_{=\sin (x)}-x^{2} \mathrm{~d} x \\
& =\frac{1}{2}\left[-\cos (x)-\left.\frac{x^{3}}{3}\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}\right. \\
& =\frac{1}{2}\left[\left(-\cos \left(\frac{\pi}{4}\right)-\frac{1}{3}\left(\frac{\pi}{4}\right)^{3}\right)-\left(-\cos \left(-\frac{\pi}{4}\right)-\frac{1}{3}\left(-\frac{\pi}{4}\right)^{3}\right)\right] \\
& =\frac{1}{2}\left[-\frac{\sqrt{2}}{2}-\frac{\pi^{3}}{3\left(4^{3}\right)}+\frac{\sqrt{2}}{2}-\frac{\pi^{3}}{3\left(4^{3}\right)}\right] \\
& =-\frac{2 \pi^{3}}{6\left(4^{3}\right)} \\
& =-\frac{\pi^{3}}{3\left(4^{3}\right)} \approx-0.1614
\end{aligned}
$$

Do ONE of the following two problems. Cross out the one you do NOT want graded.
6. Consider $\iint_{R} f(x, y) \mathrm{d} A$, where R is the region bounded by curves as in the following picture:

(a) Set up, but do not evaluate the double integral as $\mathrm{d} y \mathrm{~d} x$.

Solution: "Shooting arrows" in the y direction yields two integrals:

$$
\iint_{R} f(x, y) \mathrm{d} A=\int_{0.606}^{1.27} \int_{e^{-x}}^{\arctan (x)} f(x, y) \mathrm{d} y \mathrm{~d} x+\int_{1.27}^{2.13} \int_{x-1}^{\arctan (x)} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

(b) Set up, but do not evaluate the double integral as $\mathrm{d} x \mathrm{~d} y$.

Solution: "Shooting arrows" in the x direction yields two integrals:

$$
\iint_{R} f(x, y) \mathrm{d} A=\int_{0.278}^{0.545} \int_{-\ln (y)}^{y+1} f(x, y) \mathrm{d} x \mathrm{~d} y+\int_{0.545}^{1.13} \int_{\tan (y)}^{y+1} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

7. Consider the following double integral: $\int_{0}^{1} \int_{\sqrt{x}-1}^{1-x} f(x, y) \mathrm{d} y \mathrm{~d} x$.
(a) Draw the region being graphed. For full credit, label all bounding curves and intersection points between those curves.
Solution:

(b) Set up, but do not evaluate the double integral as a $\mathrm{d} x \mathrm{~d} y$ double integral. Solution: Note that $y=\sqrt{x}-1$ yields $x=(y+1)^{2}$ and $y=1-x$ yields $x=1-y$. Now we see

$$
\int_{0}^{1} \int_{\sqrt{x}-1}^{1-x} f(x, y) \mathrm{d} y \mathrm{~d} x=\int_{-1}^{0} \int_{0}^{(y+1)^{2}} \mathrm{~d} x \mathrm{~d} y+\int_{0}^{1} \int_{0}^{1-y} \mathrm{~d} x \mathrm{~d} y
$$

