# MATH 3503 - EXAM 1 - FALL 2018 SOLUTION 

7 September 2018
Instructor: Tom Cuchta

## Instructions:

- Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must show work backing up your claim. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- Good luck!

1. (7 points) The curve given by the following parametric equation is called a Lissajous curve:

$$
\left\{\begin{array}{l}
x=2 \sin (3 t+1) \\
y=4 \cos (5 t)
\end{array}\right.
$$

We may draw it; the point corresponding to $t=0$ is indicated with a filled black circle at the top right of the plot:


Find an equation for the tangent line to this curve at the point corresponding to $t=0$.
Solution (this problem resembles $\# 66$ from HW1): First find the point corresponding to parameter value $t=0$ by plugging $t=0$ into the parametric equations:

$$
x(0)=2 \sin (3(0)+1)=2 \sin (1)
$$

and

$$
y(0)=4 \cos (5(0))=4 \underbrace{\cos (0)}_{=1}=4 .
$$

Thus we see that the coordinates of the point in question are $\left(x_{0}, y_{0}\right)=(2 \sin (1), 4)$. Calculate

$$
x^{\prime}(t)=6(1-\cos (t))
$$

and

$$
y^{\prime}(t)=6 \sin (t)
$$

Now calculate the slope of the tangent line at any parameter value $t$ :

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{6 \sin (t)}{6(1-\cos (t))}
$$

Therefore the slope of the tangent line at the point of the graph corresponding to parameter $t=0$ is

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{t=0}=\frac{6 \sin (0)}{6(1-\cos (0))}=\frac{0}{6}=0
$$

Therefore using the point-slope form of the equation of the line, we get the equation to the tangent line to be the line going through $\left(x_{0}, y_{0}\right)=(2 \sin (1), 4)$ with slope $m=0$, i.e.

$$
y-4=0
$$

which is the horizontal line $y=4$.
2. (8 points) Find the area under the cycloid given by

$$
x=6(\theta-\sin (\theta))
$$

$$
y=6(1-\cos (\theta))
$$

$$
0 \leq \theta \leq 2 \pi
$$



Solution (this problem resembles \#102 in HW1): First calculate

$$
x^{\prime}(\theta)=6(1-\cos (\theta)) .
$$

Now, using the formula for area, we compute

$$
\begin{align*}
\text { Area } & =\left|\int_{0}^{2 \pi} y(t) x^{\prime}(t) \mathrm{d} \theta\right|  \tag{*}\\
& =\left|\int_{0}^{2 \pi} 6(1-\cos (\theta)) 6(1-\cos (\theta)) \mathrm{d} \theta\right| \\
& =36\left|\int_{0}^{2 \pi} 1-2 \cos (\theta)+\cos ^{2}(\theta) \mathrm{d} \theta\right| \\
& =36\left[\left|\int_{0}^{2 \pi} 1 \mathrm{~d} \theta-2 \int_{0}^{2 \pi} \cos (\theta) \mathrm{d} \theta+\int_{0}^{2 \pi} \cos ^{2}(\theta) \mathrm{d} \theta\right|\right]
\end{align*}
$$

Since

$$
\begin{gathered}
\int_{0}^{2 \pi} 1 \mathrm{~d} \theta=\left.\theta\right|_{0} ^{2 \pi}=2 \pi-0=2 \pi \\
-2 \int_{0}^{2 \pi} \cos (\theta) \mathrm{d} \theta=-\left.2 \sin (\theta)\right|_{0} ^{2 \pi}=-2 \sin (2 \pi)-(-2) \sin (0)=0-0=0
\end{gathered}
$$

and

$$
\begin{aligned}
\int_{0}^{2 \pi} \cos ^{2}(\theta) \mathrm{d} \theta & \stackrel{\text { trig identity }}{=} \int_{0}^{2 \pi} \frac{1+\cos (2 \theta)}{2} \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2} \mathrm{~d} \theta+\frac{1}{2} \int_{0}^{2 \pi} \cos (2 \theta) \mathrm{d} \theta \\
& =\frac{1}{2}(2 \pi-0)+\frac{1}{2}\left[\left.\frac{\sin (2 \theta)}{2}\right|_{0} ^{2 \pi}\right. \\
& =\pi+0 \\
& =\pi
\end{aligned}
$$

we now see from $(*)$ that

$$
\text { Area }=36[2 \pi-0+\pi=36(3 \pi)=108 \pi
$$

3. (8 points) Find the arc length of the parametric curve $\left\{\begin{array}{l}x=\cos (t) \\ y=\sin (t) \\ z=\frac{t}{2} \\ 1 \leq t \leq 5\end{array}\right.$

Solution (this problem resembles \#116 in HW1): First calculate

$$
\begin{gathered}
x^{\prime}(t)=-\sin (t) \\
y^{\prime}(t)=\cos (t)
\end{gathered}
$$

and

$$
z^{\prime}(t)=\frac{1}{2}
$$

Now using the arclength formula, we calculate

$$
\begin{aligned}
\text { ArcLength } & =\int_{1}^{5} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} \mathrm{~d} t \\
& =\int_{1}^{5} \sqrt{(-\sin (t))^{2}+(\cos (t))^{2}+\left(\frac{1}{2}\right)^{2}} \mathrm{~d} t \\
& \cos ^{2}(t)+\sin ^{2}(t)=1 \int_{1}^{5} \sqrt{1+\frac{1}{4}} \mathrm{~d} t \\
& =\sqrt{\frac{5}{4}} \int_{1}^{5} 1 \mathrm{~d} t \\
& =\left.\sqrt{\frac{5}{4}} t\right|_{t=1} ^{t=5} \\
& =\sqrt{\frac{5}{4}}(5-1) \\
& =4 \sqrt{\frac{5}{4}} \\
& =2 \sqrt{5}
\end{aligned}
$$

4. (18 points) Consider the vectors $\vec{a}=\langle 1,4,-1\rangle$ and $\vec{b}=\langle-1,-2,3\rangle$.
(a) (6 points) Compute $2 \vec{a}-3 \vec{b}$.

Solution (this resembles Quiz 1 (i)): Calculate

$$
\begin{aligned}
2 \vec{a}-3 \vec{b} & =2\langle 1,4,-1\rangle-3\langle-1,-2,3\rangle \\
& =\langle 2,8,-2\rangle-\langle-3,-6,9\rangle \\
& =\langle 2+3,8+6,-2-9\rangle \\
& =\langle 5,14,-11\rangle
\end{aligned}
$$

(b) (6 points) Compute $\|\vec{a}+\vec{b}\|$.

Solution (this resembles Quiz 1 (ii)): Calculate

$$
\begin{aligned}
\|\vec{a}+\vec{b}\| & =\|\langle 1,4,-1\rangle+\langle-1,-2,3\rangle\| \\
& =\|\langle 1-1,4-2,-1+3\rangle\| \\
& =\|\langle 0,2,2\rangle\| \\
& =\sqrt{0^{2}+2^{2}+2^{2}} \\
& =\sqrt{8}
\end{aligned}
$$

(c) (6 points) Find the unit vector $\vec{u}$ pointing in the same direction as $\vec{a}$.

Solution (this resembles \#10 in HW2): We know that $\vec{a}$ is not a unit vector because

$$
\|\vec{a}\|=\|\langle 1,4,-1\rangle\|=\sqrt{1^{2}+4^{2}+(-1)^{2}}=\sqrt{1+16+1}=\sqrt{18} \underbrace{\neq 1}_{\text {not a unit vector }} .
$$

Therefore we must scale $\vec{a}$ to get a unit vector pointing in the same direction as $\vec{a}$ as follows:

$$
\vec{u}=\frac{\vec{a}}{\|\vec{a}\|}=\frac{1}{\sqrt{18}}\langle 1,4,-1\rangle=\left\langle\frac{1}{\sqrt{18}}, \frac{4}{\sqrt{18}},-\frac{1}{\sqrt{18}}\right\rangle .
$$

5. (7 points) Find the vector $\vec{v}$ in the plane with magnitude $\|\vec{v}\|=25$ that makes an angle of $\frac{\pi}{4}$ radians with the positive $x$-axis.
Solution (this resembles $\# 34$ in HW2): Consider the following portion of the unit circle:


So we observe that a unit vector (it is length 1 because it comes from a point on the unit circle) in the desired direction is $\vec{u}=\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle$. Therefore the desired vector is

$$
\vec{v}=25 \vec{u}=25\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle=\langle 25 \sqrt{2}, 25 \sqrt{2}\rangle .
$$

6. (14 points) Let $\vec{u}=\langle 1,3,-1\rangle$ and let $\vec{v}=\langle 5,-1,-2\rangle$.
(a) (7 points) Compute $\operatorname{proj}_{\vec{u}} \vec{v}$.

Solution (this problem resembles \#170 a) in HW2): Using the definiton of proj, compute

$$
\begin{aligned}
\operatorname{proj}_{\vec{u}} \vec{v} & =\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \vec{u} \\
& =\frac{\langle 1,3,-1\rangle \cdot\langle 5,-1,-2\rangle}{\|\langle 1,3,-1\rangle\|^{2}}\langle 1,3,-1\rangle \\
& =\frac{5-3+2}{\sqrt{1+9+1}^{2}}\langle 1,3,-1\rangle \\
& =\frac{4}{11}\langle 1,3,-1\rangle \\
& =\left\langle\frac{4}{11}, \frac{12}{11},-\frac{4}{11}\right\rangle
\end{aligned}
$$

(b) (7 points) Use your answer from above to compute $\operatorname{comp}_{\vec{u}} \vec{v}$.

Solution (this problem resembles $\# \mathbf{1 7 0} \mathbf{b}$ ) in HW2): Using the definition of comp, compute

$$
\operatorname{comp}_{\vec{u}} \vec{v}=\left\|\operatorname{proj}_{\vec{u}} \vec{v}\right\|=\left\|\left\langle\frac{4}{\sqrt{11}}, \frac{12}{\sqrt{11}},-\frac{4}{\sqrt{11}}\right\rangle\right\|=\sqrt{\frac{16}{121}+\frac{144}{121}+\frac{16}{121}}=\sqrt{\frac{176}{121}}=\frac{\sqrt{176}}{11} .
$$

7. (18 points) A 47 lb weight hangs from a rope that makes the angles of $27^{\circ}$ and $71^{\circ}$ respectively with the horizontal.
(a) (5 points) Draw a picture of this scenario, letting $\vec{T}_{1}$ and $\vec{T}_{2}$ be the force of tension in the cables. Solution (this resembles \# 56 on HW2): Draw the scenario:

(b) (13 points) Find the magnitudes of the forces of tension $\vec{T}_{1}$ and $\vec{T}_{2}$ in the cables if the resultant force of the object is zero.
Solution: First draw the two natural triangles in this problem:


From this we observe:

$$
\begin{aligned}
& T_{1}^{H}=\left\|T_{1}\right\| \cos \left(27^{\circ}\right), \\
& T_{1}^{V}=\left\|T_{1}\right\| \sin \left(27^{\circ}\right), \\
& T_{2}^{H}=\left\|T_{2}\right\| \cos \left(27^{\circ}\right),
\end{aligned}
$$

and

$$
T_{2}^{V}=\left\|T_{2}\right\| \sin \left(27^{\circ}\right)
$$

Since "result force of the object is zero", we arrive at the equations

$$
\left\{\begin{array}{l}
T_{1}^{H}=T_{2}^{H} \\
T_{1}^{V}+T_{2}^{V}=47
\end{array}\right.
$$

Replacing these with the equivalent expressions involing $\left\|T_{1}\right\|$ and $\left\|T_{2}\right\|$, we obtain

$$
\left\{\begin{array}{l}
\left\|T_{1}\right\| \cos \left(27^{\circ}\right)=\left\|T_{2}\right\| \cos \left(71^{\circ}\right)  \tag{i}\\
\left\|T_{1}\right\| \sin \left(27^{\circ}\right)+\left\|T_{2}\right\| \sin \left(71^{\circ}\right)=47
\end{array}\right.
$$

From (i) we get

$$
\left\|T_{1}\right\|=\left\|T_{2}\right\| \frac{\cos \left(71^{\circ}\right)}{\cos \left(27^{\circ}\right)}
$$

Plugging this into (ii) yields

$$
\left(\left\|T_{2}\right\| \frac{\cos \left(71^{\circ}\right)}{\cos \left(27^{\circ}\right)}\right) \sin \left(27^{\circ}\right)+\left\|T_{2}\right\| \sin \left(71^{\circ}\right)=47
$$

Solving this for $\left\|T_{2}\right\|$ yields

$$
\left\|T_{2}\right\|=\frac{47}{\frac{\cos \left(71^{\circ}\right)}{\cos \left(27^{\circ}\right)} \sin \left(27^{\circ}\right)+\sin \left(71^{\circ}\right)}
$$

and hence

$$
\left\|T_{1}\right\|=\left(\frac{47}{\frac{\cos \left(71^{\circ}\right)}{\cos \left(27^{\circ}\right)} \sin \left(27^{\circ}\right)+\sin \left(71^{\circ}\right)}\right) \frac{\cos \left(71^{\circ}\right)}{\cos \left(27^{\circ}\right)}
$$

8. (6 points) Let $P=(1,2,3)$ and let $Q=(5,-1,2)$. Find an equation for the line containing both $P$ and $Q$. Solution (this problem resembles HW3 \#244 and \#248): The parallel vector is given by

$$
\vec{v}=\overrightarrow{P Q}=\langle 5,-1,2\rangle-\langle 1,2,3\rangle=\langle 4,-3,-1\rangle .
$$

Therefore, using $\left(x_{0}, y_{0}, z_{0}\right)=(1,2,3)$ we oberve that the equation of the line is given by the following parametric equations:

$$
\left\{\begin{array}{l}
x=1+4 t \\
y=2-3 t \\
z=3-t
\end{array}\right.
$$

9. (14 points) Let $P=(1,2,2)$, let $Q=(2,-1,4)$, and let $R=(2,0,0)$.
(this problem resembles HW3 \#268)
(a) (4 points) Find $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.

Solution: Calculate

$$
\overrightarrow{P Q}=\langle 2,-1,4\rangle-\langle 1,2,2\rangle=\langle 1,-3,2\rangle
$$

and calculate

$$
\overrightarrow{P R}=\langle 2,0,0\rangle-\langle 1,2,2\rangle=\langle 1,-2,-2\rangle
$$

(b) (5 points) Find a vector $\vec{n}$ that is perpendicular to both $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.

Solution: Calculate

$$
\begin{aligned}
\vec{n} & =\overrightarrow{P Q} \times \overrightarrow{P R} \\
& =\operatorname{det}\left(\left[\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -3 & 2 \\
1 & -2 & -2
\end{array}\right]\right) \\
& =\langle(-3)(-2)-(2)(-2),-(1(-2)-2(1)), 1(-2)-(-3)(1)\rangle \\
& =\langle 10,4,1\rangle
\end{aligned}
$$

(c) (5 points) Use your answer from part b to find an equation of the plane containing $P, Q$, and $R$. Solution: We write the equation of the plane containing the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,2,2)$ with normal vector $\vec{n}=\langle 10,4,1\rangle$ :

$$
10(x-1)+4(y-2)+(z-2)=0 .
$$

