Homework 8 — MATH 2510 Spring 2018

Consider the vocabulary $\mathcal{V} = \{ \leq \}$. Recall the following \mathcal{V} -sentences (called "axioms") from Tuesday's class:

- 1. Axiom 1 (reflexive) $\forall x (x \leq x)$
- 2. Axiom 2 (anti-symmetric). $\forall x \forall y (x \leq y \land y \leq x \rightarrow x = y)$
- 3. Axiom 3 (transitive). $\forall x \forall y \forall z (x \leq y \land y \leq z \rightarrow x \leq z)$
- 4. Axiom 4 (total). $\forall x \forall y (x \leq y \lor y \leq x)$

And recall the "well-ordering principle": **every** nonempty subset of the universe contains a least element. (*note: writing this in logic symbols* necessitates something like " $\forall S \subseteq U$ " which is not part of our language of first order logic — it is "second order logic"!)

We say that a structure $M = (S | \preceq)$ is a preorder on S if it is reflexive and transitive. We say that a structure $M = (S | \preceq)$ is a partial order on S if it is an anti-symmetric preorder. We say that a structure $M = (S | \preceq)$ is a total order on S if it is a total partial order. We say that a structure $M = (S | \preceq)$ is a total order on S if it is a total order that also obeys the well-ordering principle.

<u>Problems</u>

In every problem, determine which of the axioms that the structure models. If the structure is a preorder, partial order, total order, or well-order, then state so.

- 1. Consider the structure $M = (\{\emptyset, \{a\}, \{b\}, \{a, b\}\} \mid \preceq)$ where $x \preceq y$ is interpreted to mean $x \subseteq y$.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2$. Consider the structure $M = (\mathbb{R}| \preceq)$, where $x \preceq y$ is interpreted to mean $f(x) \leq f(y)$ (where " \leq " here is interpreted in the usual way).
- 3. Consider the xy-plane $\mathbb{R}^2 = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R}\}$. Consider the structure $M = (\mathbb{R}| \leq)$ where $(x_1, y_1) \leq (x_2, y_2)$ is interpreted to mean that $x_1 \leq x_2$ and $y_1 \leq y_2$ (where " \leq " here is interpreted in the usual way). (note: this is called the product order of \leq)
- 4. Consider the xy-plane \mathbb{R}^2 . Consider the structure $M = (\mathbb{R} | \preceq)$ where $(x_1, y_1) \preceq (x_2, y_2)$ is interpreted to mean that $x_1 < x_2$ OR $x_1 = x_2$ and $y_1 \leq y_2$ (where "<" and " \leq " are interpreted in the usual way). So for example, $(-2, 5) \leq (5, 2000)$ because -2 < 5 and $(-2, 232) \leq (-2, 333)$ because -2 = -2 and $232 \leq 333$. (note: this is called "lexicographic" or "dictionary" order)

5. (Sharkovsky order) Consider the structure $M = (\mathbb{N}| \preceq)$, where \preceq is interpreted to be the so-called Sharkovskii order:

You can understand this interpretation by thinking of it as saying

descending powers of 2 (ascending) $\leq \ldots \leq$ (odd numbers) $\cdot 2^n \leq$ (odd numbers) $\cdot 2^{n-1} \leq \ldots \leq$ (odd numbers) $\cdot 2 \leq$ odd numbers (descending)

(note: this order is fundamental to Sharkovskii's theorem from the 1960's)

Recall that we defined the notation $A \subseteq B$ to abbreviate the formula $z \in A \rightarrow z \in B$. We write $A \cap B$ as and abbreviation for $z \in A \land z \in B$.

6. Prove that that $X \cap Y \subseteq X$.