Homework 8 - MATH 2510 Spring 2018
Consider the vocabulary $\mathcal{V}=\{\preceq\}$. Recall the following \mathcal{V}-sentences (called "axioms") from Tuesday's class:

1. Axiom 1 (reflexive) $\forall x(x \preceq x)$
2. Axiom 2 (anti-symmetric). $\forall x \forall y(x \preceq y \wedge y \preceq x \rightarrow x=y)$
3. Axiom 3 (transitive). $\forall x \forall y \forall z(x \preceq y \wedge y \preceq z \rightarrow x \preceq z)$
4. Axiom 4 (total). $\forall x \forall y(x \preceq y \vee y \preceq x)$

And recall the "well-ordering principle": every nonempty subset of the universe contains a least element. (note: writing this in logic symbols necessitates something like $\forall S \subseteq \mathcal{U}$ " which is not part of our language of first order logic - it is "second order logic"!)
We say that a structure $M=(S \mid \preceq)$ is a preorder on S if it is reflexive and transitive. We say that a structure $M=(S \mid \preceq)$ is a partial order on S if it is an anti-symmetric preorder. We say that a structure $M=(S \mid \preceq)$ is a total order on S if it is a total partial order. We say that a structure $M=(S \mid \preceq)$ is a well-order on S if it is a total order that also obeys the well-ordering principle.

Problems

In every problem, determine which of the axioms that the structure models. If the structure is a preorder, partial order, total order, or well-order, then state so.

1. Consider the structure $M=(\{\emptyset,\{a\},\{b\},\{a, b\}\} \mid \preceq)$ where $x \preceq y$ is interpreted to mean $x \subseteq y$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f(x)=x^{2}$. Consider the structure $M=(\mathbb{R} \mid \preceq)$, where $x \preceq y$ is interpreted to mean $f(x) \leq f(y)$ (where " \leq " here is interpreted in the usual way).
3. Consider the $x y$-plane $\mathbb{R}^{2}=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}\}$. Consider the structure $M=(\mathbb{R} \mid \preceq)$ where $\left(x_{1}, y_{1}\right) \preceq\left(x_{2}, y_{2}\right)$ is interpreted to mean that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$ (where " \leq " here is interpreted in the usual way).
(note: this is called the product order of \leq)
4. Consider the $x y$-plane \mathbb{R}^{2}. Consider the structure $M=(\mathbb{R} \mid \preceq)$ where $\left(x_{1}, y_{1}\right) \preceq\left(x_{2}, y_{2}\right)$ is interpreted to mean that $x_{1}<x_{2}$ OR $x_{1}=x_{2}$ and $y_{1} \leq y_{2}$ (where " $<$ " and " \leq " are interpreted in the usual way). So for example, $(-2,5) \leq(5,2000)$ because $-2<5$ and $(-2,232) \leq(-2,333)$ because $-2=-2$ and $232 \leq 333$.
(note: this is called "lexicographic" or "dictionary" order)
5. (Sharkovsky order) Consider the structure $M=(\mathbb{N} \mid \preceq)$, where \preceq is interpreted to be the so-called Sharkovskii order:

$$
\begin{aligned}
1 \prec 2 \prec 2^{2} \prec 2^{3} \prec & \cdots \prec 2^{n} \prec \ldots \quad \cdots \prec 7 \cdot 2^{n} \prec 5 \cdot 2^{n} \prec 3 \cdot 2^{n} \prec \ldots \\
& \cdots \prec 7 \cdot 2 \prec 5 \cdot 2 \prec 3 \cdot 2 \prec \cdots \prec 9 \prec 7 \prec 5 \prec 3 .
\end{aligned}
$$

You can understand this interpretation by thinking of it as saying
descending powers of 2 (ascending) $\preceq \ldots \preceq$ (odd numbers) $\cdot 2^{n} \preceq$ (odd numbers) $\cdot 2^{n-1} \preceq \ldots \preceq$ (odd numbers) $\cdot 2 \preceq$ odd numbers (descending)
(note: this order is fundamental to Sharkovskii's theorem from the 1960's)
Recall that we defined the notation $A \subseteq B$ to abbreviate the formula $z \in A \rightarrow z \in B$. We write $A \cap B$ as and abbreviation for $z \in A \wedge z \in B$.
6. Prove that that $X \cap Y \subseteq X$.

