Quiz 2 - MATH 1586 Spring 2018

1. Recall Newton's law of cooling:

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=k\left(T-T_{0}\right)
$$

where T denotes the temperature at time t, k is a proportionality constant, and T_{0} is the ambient temperature of the surrounding space.
When a cake is removed from an oven, its temperature is $280^{\circ} \mathrm{F} .7$ minutes later, it is $210^{\circ} \mathrm{F}$. How long will it take for the cake to cool down to $80^{\circ} F$ in a room that is $74^{\circ} F$?
Solution: We are told that $T_{0}=74$, so the differential equation becomes

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=k(T-74)
$$

Separate variables and integrate to get

$$
\int \frac{1}{T-74} \mathrm{~d} T=\int k \mathrm{~d} t
$$

Calculate the integrals to get

$$
\ln (T-74)=k t+C
$$

and plug both sides into e^{x} to get

$$
T-74=e^{k t+C}=C_{1} e^{k t}, \quad C_{1}=e^{C}
$$

hence our model is

$$
(*) \quad T=74+C_{1} e^{k t}
$$

We are told two initial conditions: the temperature of the cake leaving the oven yields $T(0)=280$ and the condition 7 minutes later yields $T(7)=210$. Use the first condition to see

$$
\underbrace{280}_{\text {given }}=T(0)=\underbrace{74+C_{1} e^{0}}_{\text {calculated }}
$$

Therefore we must solve $280=74+C_{1}$ for C_{1}, yielding

$$
C_{1}=280-74=206
$$

Therefore we may update our model to get

$$
(* *) \quad T=74+206 e^{k t} .
$$

Now applying the second condition yields

$$
\underbrace{210}_{\text {given }}=T(7)=\underbrace{74+206 e^{7 k}}_{\text {calculated }} .
$$

Therefore we must solve $210=74+206 e^{7 k}$ for k. This means

$$
k=\frac{1}{7} \ln \left(\frac{210-74}{206}\right)=\frac{1}{7} \ln \left(\frac{136}{206}\right) .
$$

So we may update our model again to get

$$
(* * *) \quad T=74+206 e^{\frac{1}{7} \ln \left(\frac{136}{206}\right) t} .
$$

Finally, to answer the question of at what time the cake is at temperature $80^{\circ} \mathrm{F}$, we see that we must solve

$$
\underbrace{80}_{\text {given }}=T(t)=\underbrace{74+206 e^{\frac{t}{7} \ln \left(\frac{136}{206}\right)}}_{\text {calculated }} .
$$

This implies

$$
6=206 e^{\frac{t}{7} \ln \left(\frac{136}{206}\right)}
$$

so

$$
\ln \left(\frac{6}{206}\right)=\frac{t}{7} \ln \left(\frac{136}{206}\right)
$$

therefore

$$
t=\frac{7 \ln \left(\frac{6}{206}\right)}{\ln \left(\frac{136}{206}\right)} \approx 59.61
$$

2. Compute

$$
\int x e^{3 x} \mathrm{~d} x
$$

Solution: Let $u=x$ and $\mathrm{d} v=e^{3 x}$. Then $\mathrm{d} u=\mathrm{d} x$ and $v=\frac{1}{3} e^{3 x}$.
Therefore using integration by parts we see

$$
\int x e^{3 x} \mathrm{~d} x=\frac{x}{3} e^{3 x}-\frac{1}{3} \int e^{3 x} \mathrm{~d} x=\frac{x}{3} e^{3 x}-\frac{1}{9} e^{3 x}+C .
$$

3. Compute

$$
\int_{3}^{\infty} e^{-5 x} \mathrm{~d} x
$$

Solution: Compute

$$
\begin{aligned}
\int_{3}^{\infty} e^{-5 x} \mathrm{~d} x & =\lim _{b \rightarrow \infty} \int_{3}^{b} e^{-5 x} \mathrm{~d} x \\
& =\lim _{b \rightarrow \infty}-\left.\frac{1}{5} e^{-5 x}\right|_{3} ^{b} \\
& =\lim _{b \rightarrow \infty}-\frac{e^{-5 b}}{5}+\frac{1}{5} e^{-15} \\
& =\frac{1}{5} e^{-15} .
\end{aligned}
$$

