Homework 3 - MATH 1586 Spring 2018
Recall the technique of integration by parts is of the form

$$
\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u
$$

Also recall that we derived the antiderivative of the natural logarithm using integration by parts:

$$
\int \ln (x) \mathrm{d} x=x \ln (x)-x+C
$$

Recall that an "improper integral" of the form \int_{a}^{∞} or of the form $\int_{-\infty}^{b}$ is understood in the following way:

$$
\int_{a}^{\infty} f(x) \mathrm{d} x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) \mathrm{d} x
$$

and

$$
\int_{-\infty}^{b} f(x) \mathrm{d} x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) \mathrm{d} x
$$

Finally, recall the definition of the Laplace transform of a function f :

$$
\mathscr{L}\{f\}(x)=\int_{0}^{\infty} f(t) e^{-x t} \mathrm{~d} t
$$

1. ("RL-Circuit problem")

In a series circuit containing only a resistor (R, measured in ohms), an inductor (L, measured in henries which are ohm $\cdot \mathrm{sec}$), and a current at time $t, i(t)$ (measured in amps), Kirchoff's second law states that the sum of the voltage drop across the inductor $\left(L \frac{\mathrm{~d} i}{\mathrm{~d} t}\right)$ and the voltage drop across the resistor $(i R)$ is the same as the impressed voltage $(E(t))$ on the circuit. We obtain the differential equation for the current $i(t)$

$$
L \frac{\mathrm{~d} i}{\mathrm{~d} t}+R i(t)=E(t)
$$

where L and R are constants known as the inductance and resistance.
A 25-volt electromotive force is applied to a series circuit in which the inductance is 1 henry and the resistance is 30 ohms. $i^{\prime}+30 i=25$
a.) What is the differential equation we must solve here?
b.) Calculate $\frac{\mathrm{d}}{\mathrm{d} t}\left[e^{30 t} i(t)\right]$. What do you notice about this compared to the left-hand side of your differential equation?
c.) Multiply your differential equation on both sides by $e^{30 t}$ and then rewrite the left-hand side as $\frac{\mathrm{d}}{\mathrm{d} t}\left[e^{30 t} i(t)\right]$.
d.) Solve the differential equation by integrating and solving for $i(t)$.
2. Compute $\int_{5}^{11} x e^{x} \mathrm{~d} x$.
3. Compute $\int x^{2} e^{x} \mathrm{~d} x$.
4. Compute $\int(2 x+3) e^{2 x} \mathrm{~d} x$.
5. Compute $\int_{2}^{3} \ln (x) \mathrm{d} x$.
6. Let $f(t)=e^{7 t}$.
(a) What integral must you solve in order to calculate $\mathscr{L}\{f\}(x)$?
(b) Calculate $\mathscr{L}\{f\}(x)$ as an improper integral.
7. Let $f(t)=t$.
(a) Let $x>0$. What integral must you solve in order to calculate $\mathscr{L}\{f\}(x)$?
(b) Calculate $\mathscr{L}\{f\}(x)$ using integration by parts and improper integration.

