MATH 3315 - EXAM 4 - FALL 2017 SOLUTION

Friday 17 November 2017
Instructor: Tom Cuchta

Instructions:

- Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must show work backing up your claim. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- Good luck!

1. (13 points) Find the exact value of the series.
(a) $\left(6\right.$ points) $\sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k}$

Solution: This is a geometric series with $r=\frac{2}{3}$. So compute

$$
\sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k}=\frac{1}{1-\frac{2}{3}}=\frac{1}{\frac{1}{3}}=3 .
$$

(b) (7 points) $\sum_{k=2}^{\infty}\left(\frac{1}{k}-\frac{1}{k-1}\right)$

Solution: Consider the infinite sum as a limit of a partial sum:

$$
\begin{aligned}
\sum_{k=2}^{\infty} \frac{(-1)^{k} x^{k}}{k} & =\lim _{N \rightarrow \infty} \sum_{k=2}^{N} \frac{(-1)^{k} x^{k}}{k} \\
& =\lim _{N \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{1}\right)+\left(\frac{1}{3}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{A}\right)+\ldots+\left(\frac{1}{N}-\frac{1}{A-1}\right) \\
& =\lim _{N \rightarrow \infty}-1+\frac{1}{N}
\end{aligned}
$$

2. (21 points) Find the interval of convergence and radius of convergence of the following power series.
(a) (7 points) $\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{k}}{k}$

Solution: Using the ratio test, compute

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\frac{(-1)^{k+1} x^{k+1}}{k+1} \frac{k}{(-1)^{k} x^{k}}\right| & =\lim _{k \rightarrow \infty}\left|x \frac{k}{k+1}\right| \\
& =|x|
\end{aligned}
$$

The ratio test tells us that the series converges provided that $|x|<1$, i.e. $-1<x<1$ and that the series diverges provided that $|x|>1$, i.e. $x<-1$ and $x>1$. We must check the endpoints $x=1$ and $x=-1$ manually. At $x=1$, the series becomes $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$, which converges by the alternating series test. At $x=-1$, the series becomes $\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1)^{k}}{k}=\sum_{k=1}^{\infty} \frac{1}{k}$, which diverges (it is the harmonic series). Therefore the interval of convergence is $(-1,1]$ and the radius of convergence is 1.
(b) (7 points) $\sum_{k=1}^{\infty} k!x^{k}$

Solution: By the ratio test,

$$
\lim _{k \rightarrow \infty}\left|\frac{(k+1)!x^{k+1}}{k!x^{k}}\right|=\lim _{k \rightarrow \infty}|(k+1) x|= \begin{cases}0, & x=0 \\ \infty, & x \neq 0\end{cases}
$$

Therefore the interval of convergence of the series is the set $[0,0]=\{0\}$ and the radius of convergence is 0 .
(c) (7 points) $\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{k}}{(k+1)!}$

Solution: By the ratio test,

$$
\lim _{k \rightarrow \infty}\left|\frac{x^{k+1}}{(k+2)!} \frac{(k+1)!}{x^{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{x}{k+2}\right|=0
$$

and so the interval of convergence of the series is $(-\infty, \infty)=\mathbb{R}$ and the radius of convergence is ∞.
3. (10 points) Find a power series for $f(x)=\frac{1}{2-x}$ centered at $c=3$.

Solution: Think about a simple geometric series centered at $c=3$:

$$
\sum_{k=0}^{\infty}(x-3)^{k}=\frac{1}{1-(x-3)}=\frac{1}{1-x+3} .
$$

So we want to rewrite $\frac{1}{2-x}$ to have a denominator with " $-x+3$ " in it. Therefore write

$$
\frac{1}{2-x}=\frac{1}{2-x+3-3}=\frac{1}{-1-(x-3)}=\frac{-1}{1-(3-x)}=-\sum_{k=0}^{\infty}(3-x)^{k}
$$

4. (56 points) Converge or diverge? Why? Explain.
(a) (7 points) $\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{k^{2}-5}$

Solution: Converges by the alternating series test:

$$
\lim _{k \rightarrow \infty} \frac{k}{k^{2}-5} \stackrel{L . H .}{=} \lim _{k \rightarrow \infty} \frac{1}{2 k}=0
$$

(b) (7 points) $\sum_{k=1}^{\infty} \frac{k^{4}-3 k^{2}+1}{2 k^{4}-k+17}$

Solution: Diverges by the test for divergence:

$$
\lim _{k \rightarrow \infty} \frac{k^{4}-3 k^{2}+1}{2 k^{4}-k+17}=\frac{1}{2} \neq 0
$$

(c) (7 points) $\sum_{k=1}^{\infty} \frac{1}{k^{e}}$

Solution: Converges because it is a p-series with $p=e \approx 2.71 \ldots>1$.
(d) (7 points) $\sum_{k=1}^{\infty} \frac{5^{k}}{(2 k)!}$

Solution: Converges by the ratio test:

$$
\lim _{k \rightarrow \infty}\left|\frac{5^{k+1}}{(2(k+1))!} \frac{(2 k)!}{5^{k}}\right|=\lim _{k \rightarrow \infty} \frac{5}{(2 k+2)(2 k+1)}=0<1
$$

(e) (7 points) $\sum_{k=1}^{\infty} \frac{k^{k}}{(3 k+1)^{k}}$

Solution: Converges by the root test:

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\left|\frac{k^{k}}{(3 k+1)^{k}}\right|}=\lim _{k \rightarrow \infty} \frac{k}{3 k+1}=\frac{1}{3}<1
$$

(f) $\left(7\right.$ points) $\sum_{k=1}^{\infty}\left(\frac{10}{3}\right)^{k}$

Solution: Diverges - this is a geometric series with $r=\frac{10}{3}>1$.
(g) (7 points) $\sum_{k=1}^{\infty} \frac{k}{e^{k^{2}}}$

Solution: Converge by the integral test:

$$
\int_{1}^{\infty} \frac{x}{e^{x^{2}}} \mathrm{~d} x \stackrel{u=x^{2}}{=} \frac{1}{2} \int_{1}^{\infty} e^{-u} \mathrm{~d} u=\frac{1}{2}\left[-0+e^{-1}\right]<1 .
$$

(h) $\left(7\right.$ points) $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^{2}-1}}$

Solution: Diverges by the limit comparison test. Let $b_{k}=\frac{1}{k}$. Then compute

$$
\lim _{k \rightarrow \infty} \frac{\frac{1}{k}}{\frac{1}{\sqrt{k^{2}-1}}}=\lim _{k \rightarrow \infty} \frac{\sqrt{k^{2}-1}}{k}=\lim _{k \rightarrow \infty} \sqrt{1-\frac{1}{k^{2}}}=\sqrt{1}=1 .
$$

The result follows because $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges as it is the harmonic series.

