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1 Introduction and Definitions

In this paper, R will always denote a commutative ring. An element z ∈ R is
called a zero-divisor if there exists a nonzero r ∈ R such that rz = 0. The set
of zero-divisors is denoted Z(R) and the set of nonzero zero-divisors as Z(R)∗.
The annihilator of a ring element r is the set of all s ∈ R such that rs = 0.
An element is said to be regular if it is not a zero-divisor. An element r is
nilpotent if rn = 0 for some positive integer n. A ring is called local if it has
a unique maximal ideal. A ring is called Artinian if it satisfies the descending
chain condition on ideals. Note that all finite rings are Artinian.

The zero-divisor graph of R, Γ(R), is the graph whose vertices are the
nonzero zero-divisors of R, and where two vertices are connected by an edge if
and only if their product is 0. Zero-divisor graphs were introduced in [4] by I.
Beck, and were redefined to great effect by D.F. Anderson and P. Livingston in
[1]. Since then, the concept has been successfully extended to non-commutative
rings (e.g., [12]), commutative semigroups (e.g., [6]), ideal-divisor graphs (e.g.,
[10]), and irreducible divisor graphs (e.g., [5]). Our definition of the zero-
divisor graph follows [3] and [9], and differs slightly from that of [1] in that
we allow a vertex c to be connected to itself if c2 = 0. Such a vertex is called
looped.

A path between two vertices of a graph G is a sequence of edges that
could be followed to get from one vertex to the other. The distance between
two vertices of a graph G is the number of edges in a minimal path between
the vertices. The diameter of G (denoted diam(G)) is the maximal distance
between any pair of vertices. A cycle is a path, excluding loops, from a vertex
to itself that does not repeat edges. The girth of G (denoted g(G)) is the
length of the smallest cycle. If there are no cycles in G, the girth is said to be
∞.

There are some special types of graphs that it will be useful for us to define.
A complete graph is a graph such that every vertex is adjacent to every other
vertex. A complete bipartite graph is one where the vertices can be divided
into two sets such that every vertex in one set is connected to every vertex in
the other, and no vertex is connected to any other in the same set. A star
graph is a complete bipartite graph in which at least one of the two vertex
sets contains only one vertex. That one vertex is called the center of the star
graph. More information about graph theory may be found in [7].

2 Nilradical and Non-nilradical Graphs

We now introduce two new graphs associated with commutative rings. Both
are subgraphs of the zero-divisor graph, and turn out to have surprisingly
similar structure to it.
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Definition 2.1. The nilradical graph, denoted N(R), is the graph whose
vertices are the nonzero nilpotents of R and where two vertices are connected
by an edge if and only if their product is 0.

Definition 2.2. The non-nilradical graph, denoted Ω(R), is the graph whose
vertices are the non-nilpotent zero-divisors of R and where two vertices are
connected by an edge if and only if their product is 0.

Note that N(R) is the subgraph of Γ(R) containing only the nilpotent
vertices and incident edges and that Ω(R) is the subgraph of Γ(R) containing
only the vertices that are not nilpotent and incident edges. In addition, every
nonzero zero-divisor of R is a vertex in exactly one of N(R) or Ω(R).
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Figure 1: The three graphs of Z18: Γ(Z18) (on top), N(Z18) (lower left), and
Ω(Z18) (lower right).

The following theorem gives strong restrictions on the possible diameter
and girth of N(R). It provides an alternate proof of Theorems 17 and 21 of
[2], which concern domainlike rings, and is a stronger result.

Theorem 2.3. For any commutative ring R, N(R) is connected with di-
ameter less than or equal to 2, and girth 3 or ∞.
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Proof. By Theorems 2.3 and 2.4 of [1] and Theorem 1.4 of [11], for any com-
mutative ring with unity, R, diam(Γ(R)) ≤ 3 and g(Γ(R)) is 3, 4, or ∞. In
fact, the proofs given do not rely on the existence of a multiplicative identity.
Since nil(R) is a finite commutative ring, N(R) is connected with diameter
less than or equal to 3 and girth 3, 4, or ∞. If nil(R) = {0}, then the theorem
holds trivially. Otherwise, by Theorem 2.2 of [3], there exists a nonzero a ∈
nil(R) such that ak = 0 for all k ∈ nil(R). Hence, diam(N(R)) ≤ 2.

Suppose N(R) has a cycle of length 4, i.e. a — b — c — d — a for some
a, b, c, d ∈ nil(R)\{0}. Then, consider the product bd. If bd = 0, then a —
b — d — a is a 3-cycle. If bd = b, then bdm = b for all m, contradicting d
nilpotent. If bd = a, then a — b — c — a is a 3-cycle. Thus, assume without
loss of generality that bd is distinct from 0, a, b, c, d.

Since, bd is nilpotent, (bd)n = 0 for some n ≥ 2. Suppose (bd)2 = 0. Then,
look at b2d. If b2d = 0, then a — b — bd — a is a 3-cycle. If b2d = bd, then
bmd = bd for all m, contradicting b nilpotent. If b2d = b, then bd = 0, since
b2d2 = 0, a contradiction. If b2d = d, then b2md = d, contradicting b nilpotent.
If b2d is distinct from a, b, c, d, bd, 0, then a — bd — b2d — a is a 3-cycle. Thus,
assume without loss of generality that b2d = a.

Look at b2. If b2 = 0, then we have a contradiction, since b2d = a. If b2 = b,
then b is not nilpotent, a contradiction. If b2 = d, then d2 = a by substitution,
so a — d — c — a is a 3-cycle. If b2 = a, then ad = a, contradicting d
nilpotent. If b2 = c, then a — b — c — a is a 3-cycle. If b2 = bd, then a = b3,
so a — b — c — a is a 3-cycle. If b2 is distinct from 0, a, b, c, d, bd, then a —
bd — b2 — a is a 3-cycle. This finishes the case where (bd)2 = 0.

So, assume the least n satisfying (bd)n = 0 is greater than 2. Look at
(bd)n−1. If (bd)n−1 = 0, this contradicts our choice of n. If (bd)n−1 = b, then
a — b — bd — a is a 3-cycle. If (bd)n−1 = bd, then n = 2, a contradiction.
If (bd)n−1 = a, then a — b — c — a is a 3-cycle. If (bd)n−1 is distinct from
a, b, c, d, bd, then a — bd — (bd)n−1 — a is a 3-cycle. The remaining cases are
analogous to those already considered.

We now present some definitions that we need to describe the non-nilradical
graph, Ω(R).

Definition 2.4. A vertex of a graph is isolated if it has no edges incident
to it.

Definition 2.5. A graph is almost connected if there exists a path between
any two non-isolated vertices.

Theorem 2.6. For any a commutative ring R, Ω(R) is almost connected
and the connected component has diameter less than or equal to 3 and girth 3,
4, or ∞.
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Proof. Let a, b, c, d ∈ Z(R)\nil(R) be distinct and let a — b, c — d. We show
there is a path of length at most 3 between a and c. Consider bd. Either
bd ∈ Z(R)\nil(R), or else bd ∈ nil(R). If bd ∈ Z(R)\nil(R), then a — bd —
c is a path of length 2. (If bd is not distinct from either a or c, then we have
an even shorter path.) If bd ∈ nil(R), then there exists an n ≥ 1 such that
(bd)n = 0. Since b, d /∈ nil(R), bn and dn are vertices in Ω(R). Thus, a — bn

and c — dn, but also bn — dn. Therefore, a — bn — dn — c is a path of length
3. Again if the four elements in the path should fail to be distinct, there exists
a shorter path from a to c.

Suppose there exists a cycle, v1 — v2 — . . . — vn — v1, of length greater
than 4 in Ω(R). Then look at v2vn. If v2vn is not nilpotent then v1 — v2vn —
vn−1 — vn —v1 is a 4-cycle. If v2vn happens to be v1, without loss of generality,
v1 — v3 — v2 — v1. If v2vn is nilpotent, let k be the least positive integer such
that (v2vn)k = 0. Then, v1 — vk

2 — vk
n — v1 is a 3-cycle, unless, for example,

vk
2 = vk

n, in which case, v1 — vk
2 — v3 — v2 — v1. Thus, whenever Ω contains

a cycle, there exists a cycle of length no more than 4.

We refer to the connected portion of Ω(R) as Ωc(R). Note that it satisfies
the same diameter and girth conditions as zero-divisor graphs.

3 Categorization of N(Zn) by Diameter and

Girth

We now focus on modular rings, and classify them by the diameter and girth
of their nilradical graphs.

Theorem 3.1. The following table holds true for N(Zn):

Factorization of n Diameter Girth

p1p2 . . . pm such that all pi are distinct primes - -

4k, gcd(2, k) = 1, p2 - k, for all prime p 0 ∞
9k, gcd(3, k) = 1, p2 - k, for all prime p 1 ∞
p2, p prime, p > 3 1 3

2p2, p prime, p > 3 1 3

p2q2, p and q prime, p 6= q 1 3

p2d, gcd(p, d) = 1, p prime, p > 3, d not divisible by any non-trivial cube 1 3

8k, gcd(8, k) = 1, p2 - k, for all prime p 2 ∞
p`a, ` ≥ 3, p prime, p > 2 2 3

2`b, ` ≥ 3, b not a product of distinct primes 2 3

Note that because all possible factorizations are considered, these are the
only diameter and girth combinations for N(Zn), so all combinations are clas-
sified.
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Proof. Let n = p1p2 . . . pm for some positive integer m, such that all pi are
distinct primes. Then, clearly N(Zn) is the empty graph.

Let n = 4k, gcd(2, k) = 1, p2 - k, for all prime p. Then the nilpotents are
the multiples of 2k. Note that 2(2k) ≡ 0, 3(2k) ≡ 2k, and so on. Therefore,
the only nilpotents are 0 and 2k. Thus, N(Zn) only has 1 vertex, implying
diameter 0, girth ∞.

Let n = 9k, gcd(3, k) = 1, p2 - k, for all prime p. Then the nilpotents
are the multiples of 3k. Note that 3(3k) ≡ 0, 4(3k) = 3(3k) + 3k ≡ 3k,
5(3k) ≡ 2(3k), and so on. Therefore, the only nilpotents are 0, 3k and 2(3k).
Thus, N(Zn) only has 2 vertices, implying diameter 1, girth ∞.

Let n = p2, where p is prime and p > 3. Then, the nilpotent elements
are the multiples of p. Let rp, sp, and tp be distinct in nil(Zn). Consider the
3-cycle, rp — sp — tp — rp. Thus, g(N(Zn)) = 3. Since the elements were
arbitrary and they are all connected, diam(N(Zn)) = 1.

Let n = 2p2, where p is prime and p > 3. Then, the nilpotent elements are
the multiples of 2p. Let 2rp, 2sp, and 2tp be distinct in nil(Zn). Consider the
3-cycle, 2rp — 2sp — 2tp — 2rp. Thus, g(N(Zn)) = 3. Since the elements
were arbitrary and they are all connected, diam(N(Zn)) = 1.

Let n = p2q2, where p and q are prime and p 6= q. Then, the nilpotent
elements are the multiples of pq. Let rpq, spq, and tpq be distinct in nil(Zn).
Consider the 3-cycle, rpq — spq — tpq — rpq. Thus, g(N(Zn)) = 3. Since
the elements were arbitrary and they are all connected, diam(N(Zn)) = 1.

Let n = p2d, where p is prime, p > 3, gcd(p, d) = 1, and d is not divisible
by any non-trivial cube. Then, the nilpotent elements are the multiples of pd.
Let rpd, spd, and tpd be distinct in nil(Zn). Consider the 3-cycle, rpd — spd
— tpd — rpd. Thus, g(N(Zn)) = 3. Since the elements were arbitrary and
they are all connected, diam(N(Zn)) = 1.

Let n = 8k, gcd(8, k) = 1, p2 - k, for all prime p. Then the nilpotents are
the multiples of 2k. Note that 4(2k) ≡ 0, 5(2k) ≡ 2k, 6(2k) ≡ 2(2k), and so
on. Therefore, the only nilpotents are 0, 2k, 2(2k) and 3(2k). Thus, N(Zn)
only has 3 vertices. Notice that 2k cannot be connected to 3(2k) since the
product is not a multiple of 8. Hence N(Zn) has diameter 2 and girth ∞.

Let n = p`a, where ` ≥ 3, p is an odd prime, and a ∈ Z. Then mp,
2mp, mp`−1, and 2mp`−1 are all nilpotent. Since mp is not connected to 2mp
the diameter is greater than 1. Thus, the diameter is 2 by Theorem 2.3. In
addition, mp — mp`−1 — 2mp`−1 — mp is a 3-cycle. Thus, g(N(Zn)) = 3.

Let n = 2`b, where ` ≥ 3 and b ∈ Z not a product of distinct primes. Then
b = cp2 for some prime p. Then, 2b, 6b, b2`−1, and 3b2`−1 are all nilpotent.
Since 2b is not connected to 6b the diameter is greater than 1. Thus, the
diameter is 2 by Theorem 2.3. In addition, cp22`−1 — cp2` — cp2`−1 — cp22`−1

is a 3-cycle. Thus, g(N(Zn)) = 3.

For modular rings where N(Zn) has girth ∞, we determine some number
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theoretic properties of the nilpotents.

Corollary 3.2. If N(Zn) has diameter 0 and girth ∞, then the sole vertex
is n

2
.

Proof. By Theorem 3.1, we know n = 4k, gcd(2, k) = 1, p2 - k, for all prime
p. The nonzero nilpotent is 2k and n = 4k. Thus, the vertex is n

2
.

Corollary 3.3. If N(Zn) has diameter 1 and girth ∞, then there are two
distinct, nonzero nilpotents and their sum is n.

Proof. By Theorem 3.1, we know n = 9k, gcd(3, k) = 1, p2 - k, for all prime p.
The nonzero nilpotent elements are 3k and 6k. Hence, 3k + 6k = 9k = n.

Corollary 3.4. If N(Zn) has diameter 2 and girth ∞, then the sum of the
two endpoints is n and the center point is n

2
.

Proof. By Theorem 3.1, we know n = 8k, gcd(8, k) = 1, p2 - k, for all prime
p. Then the nilpotent elements are 2k, 4k, 6k, where the center is 4k. Hence,
2k + 6k = 8k = n and 4k = 8k

2
= n

2
.

4 Categorization of Ωc(R) by Diameter and Girth

We now classify finite rings with unity by the diameter and girth of their non-
nilradical graphs. This is a more general classification than was presented for
nilradical graphs.

Lemma 4.1. If R is a finite, local ring with unity, then Ωc(R) is empty.

Proof. By Theorem 2.3 of [3], Z(R) = nil(R). So, Ωc(R) is empty.

Lemma 4.2. If R is the direct product of three or more commutative rings
with unity, then Ωc(R) has diameter 3 and girth 3.

Proof. Let R be the direct product of n ≥ 3 such rings. So, R ∼= R1 × R2 ×
· · ·×Rn. Consider (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), and (0, 0, 1, 0, . . . , 0), none of
which are nilpotent. These form a 3-cycle, so g(Ωc(R)) = 3.

Consider v1 = (1, 0, 1, 1, . . . , 1) and v2 = (1, 1, 0, . . . , 0). Since v1 is con-
nected to (0, 1, 0, . . .0) and v2 is connected to (0, 0, 1, 0, . . . , 0), v1 and v2 are in
Ωc(R). Clearly, v1 and v2 are not connected. Also, there is no vertex connected
to both v1 and v2, because the only ring element that annihilates both vertices
is (0, 0, . . . , 0). Therefore, diam(Ωc(R)) = 3

Theorem 4.3. For R, a finite commutative ring with unity, Ωc(R) is empty,
has diameter 1 and girth ∞, diameter 2 and girth ∞, diameter 2 and girth 4,
or diameter 3 and girth 3.
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Proof. Since R is finite, R is Artinian and, by Theorem 16.3 of [8], R can be
decomposed into a finite direct product of local rings.

Suppose R is itself local. Then Ωc(R) is empty by Lemma 4.1.
Suppose R ∼= Z2 × Z2. Then Ωc(R) has only two vertices and so has

diameter 1 and girth ∞.
Suppose R ∼= Z2 × L where L is a local ring not isomorphic to a field.

Then the only non-nilpotent zero-divisors are (1, 0), (1, a) where a ∈ Z(L)∗,
and (0, b), b ∈ L such that b 6∈ Z(L). The only elements of R that annihilate
(1, a) are of the form (0, a′) where a′ ∈ Z(L) such that aa′ = 0. But, since
L is local, (0, a′) is nilpotent, thus (1, a) is an isolated vertex. Then, (1, 0) is
attached to all (0, b) vertices, and none of the (0, b) vertices are connected to
each other. Thus, Ωc(R) is a star graph and has diameter 2 and girth ∞.

Suppose R ∼= F ×L where F is a field not isomorphic to Z2 and L is a local
ring that is not a field. Then the only non-nilpotent zero-divisors are (f, 0),
(f, a) where f ∈ F , a ∈ Z(L)∗, and (0, b), b ∈ L such that b 6∈ Z(L). The only
elements of R that annihilate (f, a) are of the form (0, a′) where a′ ∈ Z(L) such
that aa′ = 0. But, since L is local, (0, a′) is nilpotent, thus (f, a) is an isolated
vertex. Then, (f, 0) is attached to all (0, b) vertices, none of the (0, b) vertices
are connected to each other, and none of the (f, 0) vertices are connected to
one another. Thus, Ωc(R) is complete bipartite and has diameter 2 and girth
4.

Suppose R ∼= F1 × F2 where F1, F2 are fields not isomorphic to Z2. Then
none of the nonzero zero-divisors are nilpotent. Thus, Γ(R) ∼= Ωc(R) is com-
plete bipartite and has diameter 2 and girth 4.

Suppose R ∼= L1 × L2 where L1, L2 are local rings, neither of which is a
field. The only non-nilpotent zero-divisors are elements of the form (r1, 0),
(r1, b) (a, r2), (0, r2) where r1, r2 are regular and a ∈ Z(L1)

∗, b ∈ Z(L2)
∗. The

only elements of R that annihilate (r1, b) are of the form (0, b′) where b′ ∈ Z(L)
such that bb′ = 0. But, since L is local, (0, b′) is nilpotent, thus (r1, b) is an
isolated vertex. A similar argument shows that all elements (a, r2) are isolated.
Every vertex of the form (r1, 0) is attached to every vertex of the form (0, r2)
and to no vertex of the form (r1, 0). Similarly, every vertex of the form (0, r2)
is attached to every vertex of the form (r1, 0) and to no vertex of the form
(0, r2). Thus, Ωc(R) is complete bipartite and has diameter 2 and girth 4.

Suppose R ∼= L1 × L2 × . . . × Ln where n ≥ 3 and Li are all local rings.
Since R has a unity element, there must be a unity element in every Li. So,
by Lemma 4.2, Ωc(R) has diameter 3 and girth 3.

The following table provides a categorization of Ωc(Zn) by diameter and
girth. This classification follows directly from application of Theorem 4.3.
Note the restricted diameter, girth combinations as compared to the table of
N(Zn) provided in Theorem 3.1.
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Corollary 4.4. The following table holds true for Ωc(Zn):

Factorization of n Diameter Girth

pm, where p is prime and m ∈ (Z)+ - -

2pk, where p is an odd prime and k > 1 2 ∞
pkq`, where p, q are distinct primes, k, ` ∈ Z+, and pk, q` 6= 2 2 4

pe1

1
pe2

2
. . . pec

c , all pi are distinct, ei ∈ Z+, and c ≥ 3 3 3

Corollary 4.5. If Ωc(Zn) has diameter 2 and girth ∞, then the center of
the star graph is n

2
.

Proof. Since Ωc(Zn) has diameter 2 and girth ∞, it is clearly a star graph. By
the above table, n = 2pk, where p is prime and k > 1. So, n

2
is connected to

every multiple of 2, and since Ωc(Zn) is a star graph, anything connected to
more than one other vertex must be the center.

Corollary 4.6. If Ωc(Zn) has diameter 2 and girth ∞, then either n = 18
or N(Zn) has diameter 2 and girth 3.

Proof. This follows from a comparison of the tables of Theorem 3.1 and Corol-
lary 4.4.

The following example shows that the restrictions placed on diameter and
girth combinations in finite rings need not extend to infinite rings. We present
an infinite ring R where Ωc(R) has diameter 3 and girth 4. It has not yet been
determined whether there exists a ring S such that Ωc(S) has diameter 1 and
girth 3, diameter 2 and girth 3, or diameter 3 and girth ∞, but it seems that
any such ring would have to be highly artificial. Further work on classifying the
diameter and girth of Ωc(R) for infinite rings would undoubtably be valuable.

Example 4.7. Let R = Z2[x, y, z]/(xy, yz, xz, x3). Then, diam(Ωc(R)) = 3
and g(Ωc(R)) = 4. The zero-divisors of R are the set {a1x+a2x

2 +
∑m

i=1
biy

i +∑n

i=1
ciz

i | ai, bi, ci ∈ Z2}. The nonzero nilpotents are x, x2, and x + x2.
Note that the isolated vertices of Ω(R) are the zero-divisors containing non-

zero powers of both y and z in the sum because they are only connected to
nilpotents. One example of a 4-cycle in Ωc(R) is y — z — x + y — x2 + z —
y. Any polynomial containing y can only be connected to a nilpotent element
or a polynomial containing z. Similarly, any polynomial containing z can only
be connected to a nilpotent element or a polynomial containing y. Therefore,
every cycle must have an even number of edges, and hence g(Ωc(R)) = 4.

There is a 3-path between x+x2 + z and x+ y in Ωc(R), namely x+x2 + z
— y — z — x + y. Since there cannot be a vertex in Ωc(R) that is connected
to both x + x2 + z and x + y, there is not a shorter path between them. So,
diam(Ωc(R)) = 3.
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5 Further Properties of Ω(R)

The previous section classified Ωc(R) according to its diameter and girth. This
section considers other interesting properties of the non-nilradical graph for
finite rings with unity.

Theorem 5.1. For R, a finite commutative ring with unity, Ω(R) contains
at least one isolated vertex if and only if nil(R) 6= {0} and nil(R) 6= Z(R), that
is to say, if and only if Ω(R) is a proper subgraph of Γ(R).

Proof. Since R is finite, R is Artinian and, by Theorem 16.3 of [8], can be
decomposed into a finite direct product of local rings.

Suppose R is itself local. Then Ω(R) is empty by Theorem 4.1 and there
are no isolated points.

Suppose R ∼= Z2 × L where L is a local ring not isomorphic to a field.
Then the only non-nilpotent zero-divisors are (1, 0), (1, a) where a ∈ Z(L)∗,
and (0, b), b ∈ L such that b 6∈ Z(L). The only elements of R that annihilate
(1, a) are of the form (0, a′) where a′ ∈ Z(L) such that aa′ = 0. But, since L
is local, (0, a′) is nilpotent; thus (1, a) is an isolated vertex.

Suppose R ∼= F × L where F is a field not isomorphic to Z2 and L is a
local ring that is not a field. The only non-nilpotent zero-divisors are (f, 0),
(f, a) where f ∈ F , a ∈ Z(L)∗, and (0, b), b ∈ L such that b 6∈ Z(L). The only
elements of R that annihilate (f, a) are of the form (0, a′) where a′ ∈ Z(L)
such that aa′ = 0. But, since L is local, (0, a′) is nilpotent; thus (f, a) is an
isolated vertex.

Suppose R ∼= L1 × L2 where L1, L2 are local rings, neither of which is a
field. The only non-nilpotent zero-divisors are elements of the form (r1, 0),
(r1, b) (a, r2), (0, r2) where r1, r2 are regular and a ∈ Z(L1)

∗, b ∈ Z(L2)
∗. The

only elements of R that annihilate (r1, b) are of the form (0, b′) where b′ ∈ Z(L)
such that bb′ = 0. But, since L is local, (0, b′) is nilpotent; thus (r1, b) is an
isolated vertex.

Suppose R ∼= L1 × L2 × . . . × Ln where n ≥ 3, Li are all local rings, and
at least one Li is not a field. Since R has a unity element, there must be a
unity element in every Li. Assume, without loss of generality, L1 is not a field.
Then L1 has a nonzero zero-divisor a. So, (a, 1, 1, . . . , 1) is an isolated vertex
as it is only annihilated by elements of the form (a′, 0, 0, . . . , 0) where aa′ = 0,
all of which are nilpotent.

Suppose R ∼= F1 × F2 × . . . × Fn where n ≥ 1 and Fi are all fields. None
of the nonzero zero-divisors are nilpotent. So, Γ(R) ∼= Ω(R) has no isolated
vertices.

Therefore, isolated vertices occur exactly when R is of the form Z2 × L,
F × L, L1 × L2, or L1 × L2 × . . . × Ln. These are exactly the forms for which
nil(R) 6= {0} and nil(R) 6= Z(R).
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In [4], where Beck introduced zero-divisor graphs, he focused on colorings
and the chromatic number of the graphs. However, strong results about the
chromatic number of Γ(R) have not been forthcoming. Here we find, however,
that Ω(R) is mysteriously more amenable to the study of chromatic number.

Theorem 5.2. Let R be an non-local finite commutative ring with unity.
Then, χ(Ω(R)) = n, where n is the number of local rings in the decomposition
of R.

Proof. Decompose R into a direct product of local rings, L1, L2, . . . , Ln, where
n ≥ 2. Since R has a unity element, every Li does as well. Then (1, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , and (0, 0, . . . , 0, 1) form an n-clique. So, χ(Ω(R)) ≥ n.

We show that, in fact, χ(Ω(R)) = n by presenting a n-coloring. Name
the n colors c1, c2, . . . , cn. Consider any vertex of Ω(R), (a1, a2, . . . , an).
Color this vertex with the color ci, where i is the least integer such that ai

is not nilpotent. Note that there always is such an i, since otherwise all the
components would be nilpotent and the vertex would not be in Ω(R). To
show this is an n-coloring, it suffices to show that any two vertices with the
same coloring are not adjacent. Assume (a1, a2, . . . , an) and (b1, b2, . . . , bn) are
adjacent with the same coloring ck. Then, (a1, a2, . . . , an) · (b1, b2, . . . , bn) = 0.
Therefore, ak · bk = 0. However, this is not possible, as ak and bk are not
nilpotent by the definition of our coloring, and so are not zero-divisors, since
Lk is a finite local ring.

Theorem 5.3. Let R be a finite commutative ring with unity, Ωc(R) ∪ {0}
is multiplicatively closed, unless R is isomorphic to the direct product of three
or more local rings, L1, L2, L3, . . . Ln, and Γ(Li) is not complete for some i.

Proof. Since R is finite, R is Artinian and, by Theorem 16.3 of [8], R can be
decomposed into a finite direct product of local rings.

Suppose R is itself local. Then Ω(R) is empty by Theorem 4.1 and thus
closed under multiplication.

Suppose R ∼= F × L, where F is a field and L is a local ring that is not a
field. Then the only non-nilpotent zero-divisors are (f, 0), (f, a) where f ∈ F ,
a ∈ Z(L)∗, and (0, b), b ∈ L such that b 6∈ Z(L). The only elements of R that
annihilate (f, a) are of the form (0, a′), where a′ ∈ Z(L) such that aa′ = 0.
But, since L is local, (0, a′) is nilpotent; thus (f, a) is an isolated vertex. So,
Ωc(R) is made up of elements of the form (f, 0) and elements of the form (0, b)
where b is not nilpotent. Clearly, (f1, 0) · (f2, 0) is a vertex of Ωc(R) for all fi.
In addition, (f, 0) · (0, b) = (0, 0) for all b, f . It remains to check closure for
products of the form (0, b) · (0, b′) where b and b′ are not nilpotents. Assume
(0, b) · (0, b′) is nilpotent. Then (bb′)n = 0 for some n. So, b · (bn−1b′n) = 0.
Hence, b is a zero-divisor. However, since L is a finite local ring by Theorem
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2.3 [3], b is nilpotent, a contradiction. Thus, Ωc(R) ∪ {0} is multiplicatively
closed.

Suppose R ∼= L1 × L2, where L1, L2 are local rings, neither of which is a
field. The only non-nilpotent zero-divisors are elements of the form (r1, 0),
(r1, b) (a, r2), (0, r2) where r1, r2 are regular and a ∈ Z(L1)

∗, b ∈ Z(L2)
∗.

The only elements of R that annihilate (r1, b) are of the form (0, b′), where
b′ ∈ Z(L) such that bb′ = 0. But, since L is local, (0, b′) is nilpotent; thus
(r1, b) is an isolated vertex. So, Ωc(R) is made up of elements of the form
(r1, 0) and (0, r2). In addition, (r1, 0) · (0, r2) = (0, 0) for all r1 and r2. It
remains, without loss of generality, to check closure for products of the form
(r1, 0) · (r′1, 0). Assume (r1, 0) · (r′1, 0) is nilpotent. Then (r1r

′

1)
n = 0 for some

n. So, r1 · (r
n−1

1 r′1
n) = 0. Hence, r1 is a zero-divisor, a contradiction. Thus,

Ωc(R) ∪ {0} is multiplicatively closed.
Suppose R ∼= L1 × L2 × . . . × Ln, where n ≥ 3, Li are all local rings, and

at least one Li is not a field. In addition, suppose Γ(Li) is complete for all i.
Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be any two elements in R and suppose
(a1, a2, . . . , an) · (b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn) is nilpotent. Then aibi

is nilpotent for every i. For every i, either at least one of ai, bi is zero or else
ai and bi are both nonzero nilpotents. For all j, if aj is regular, then bj must
be 0. Therefore, ajbj = 0. If aj is not regular, then it is a zero-divisor and
since Γ(Lj) is complete, again ajbj = 0. Hence, aibi = 0 for all i. Thus, if
the product of any two vertices of Ωc(R) is nilpotent,it must be 0. Therefore,
Ωc(R) ∪ {0} is multiplicatively closed.

Suppose R ∼= F1 × F2 × . . . × Fn, where n ≥ 1 and Fi are all fields.
None of the nonzero zero-divisors are nilpotent. So, trivially, Ωc(R) ∪ {0} is
multiplicatively closed.

We have exhibited two very well-behaved subgraphs of the zero-divisor
graph, N(R) and Ω(R). There is no a priori reason to expect these graphs to
have meaningful graphical structure. In particular, the vertices of Ω(R) are
chosen by taking the weakly structured set Z(R) and removing an ideal; even
adjoining 0, this set of vertices has almost no algebraic structure, being closed
under neither addition nor multiplication. However, both graphs (particularly
Ω(R)) are highly structured. The ultimate reason for this structure is unclear
and should be investigated. A truly satisfying explanation of why there is so
much structure where it does not seem there ought to be any, would likely give
great insight into the set Z(R).

For example, in [9], B. Kelly and E. Wilson conjectured that finite isomor-
phic zero-divisor graphs must result from multiplicatively isomorphic sets of
zero-divisors. Determining a graphical algorithm whereby one could dissect a
finite zero-divisor graph into nilradical and non-nilradical subgraphs would be
great progress towards a proof of this conjecture, as the conjecture implies that
the two subgraphs are uniquely determined by the zero-divisor graph. After



Nilradical and non-nilradical graphs 993

breaking down the zero-divisor graph into such nicely structured subgraphs,
the result would only need to be shown for graphs smaller than was begun
with, and perhaps some sort of induction argument on the cardinality of the
graph would apply.
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