$$
\pi \mathbb{Z}=\{\pi n: n \in \mathbb{Z}\} \text { makes a subgnap of }\langle\pi,+\rangle
$$

To show it is a subgrove, just here to show that (by The 5.14):
(1) closed under operation
(2) identity elenert is in there
(3) everything in there has an inverse

So consider (1):
Let $t_{1} s \in \pi \mathbb{Z}$. Then $\exists n_{1}, n_{2} \in \pi$ so that $t=\pi n$, and $s=\pi n_{2}$ Thus, $t+s=\pi n_{1}+\pi n_{2}=\pi\left(n_{1}+n_{2}\right)$. Since $n_{1}+n_{2} \in \mathbb{Z}$, we conclude that $t+s \in \pi \mathbb{Z}$, so it is closed under the operation $+V$

Now (2):
$O \in \mathbb{Z}$ is the identity of $\left\langle\pi_{1}+\right\rangle$
But $0 \in \pi$ 亿 as well because $0=0 \pi$
Now (3):
Let $t \in \pi \mathbb{Z}$ wi th $t=n, \pi$. Then $-t=-n, \pi$ is also in $\pi \mathbb{Z}$ beccurse if $n_{1} \in Z_{1}$, then $-n_{1} \in \mathbb{Z}$.
Now, $t^{-1}=-t$ because $t+(-t)=0$.
Thus by application of The $5.14,\left\langle\pi \mathbb{Z}_{,}+\right\rangle$is a grove.

