MTH 229 H -EXAM 1 FALL 2023

Friday, 14 September
Instructor: Tom Cuchta

Instructions:

- Justify your answers algebraically whenever possible to ensure full credit.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- Good luck!

1. (12 points) Find all solutions of the given equation.
(a) (3 points) $6 x=2 x+1$

Solution: Subtract $2 x$ from both sides to get $4 x=1$, so $x=\frac{1}{4}$.
(b) (3 points) $x^{2}+x-12=0$ Solution: The left-hand side factors yielding $(x+4)(x-3)=0$, hence $x+4=0$ OR $x-3=0$. Thus $x=-4,3$.
(c) (3 points) $x^{2}+5 x-1=0$ Solution: In this case, it is not obvious if it factors or not. So we use the quadratic formula:

$$
x=\frac{-5 \pm \sqrt{5^{2}-4(1)(-1)}}{2}=-\frac{5}{2} \pm \frac{\sqrt{25+4}}{2}=-\frac{5}{2} \pm \frac{\sqrt{29}}{2} .
$$

(d) (3 points) $3^{5 x-2}=11^{-x+1}$

Solution: Take \ln of both sides to get

$$
\ln \left(3^{5 x-2}\right)=\ln \left(11^{-x+1}\right)
$$

Using the property of logarithms $\ln \left(a^{b}\right)=b \ln (a)$, we obtain

$$
(5 x-2) \ln (3)=(-x+1) \ln (11)
$$

Adding $x \ln (11)$ and $2 \ln (3)$ to both sides yields

$$
(5 \ln (3)+\ln (11)) x=\ln (11)+2 \ln (3)
$$

Therefore,

$$
x=\frac{\ln (11)+2 \ln (3)}{5 \ln (3)+\ln (11)} .
$$

2. (8 points) Find the exact value
(a) (2 points) $\cos (\pi)=-1$
(b) (2 points) $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$
(c) $\left(2\right.$ points) $\sin \left(\frac{4 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$
(d) (2 points) $\tan \left(\frac{3 \pi}{4}\right)=\frac{\sin \left(\frac{3 \pi}{4}\right)}{\cos \left(\frac{3 \pi}{4}\right)}=\frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}}=-1$
3. (36 points) Consider the following graph of a function named f :

Use the graph to resolve the following limits and function values (note: sometimes these may not exist! make sure you state that, if so!):
(a) (3 points) $\lim _{t \rightarrow-3^{-}} f(t)=+\infty$
(b) (3 points) $\lim _{t \rightarrow-3^{+}} f(t)=-\infty$
(c) (3 points) $\lim _{t \rightarrow-3} f(t)=$ DNE
(d) (3 points) $f(-3)=-4$
(e) (3 points) $\lim _{t \rightarrow 5^{-}} f(t)=3$
(f) (3 points) $\lim _{t \rightarrow 5^{+}} f(t)=5$
(g) (3 points) $\lim _{t \rightarrow 5} f(t)=\mathrm{DNE}$
(h) (3 points) $f(5)=5$
(i) (3 points) $\lim _{t \rightarrow 6^{-}} f(t)=+\infty$
(j) (3 points) $\lim _{t \rightarrow 6^{+}} f(t)=+\infty$
(k) (3 points) $\lim _{t \rightarrow 6} f(t)=+\infty$
(l) (3 points) $f(6)=\mathrm{DNE}$
4. (40 points) Compute the limit. These all exist, so they resolve to a finite number!
(a) (8 points) $\lim _{x \rightarrow 2} \frac{x^{2}-7 x+1}{x^{2}+x-10}$

Solution: In this case, we can just substitute in $x=2$:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-7 x+1}{x^{2}+x-10} & =\frac{2^{2}-7(2)+1}{2^{2}+2-10} \\
& =\frac{4-14+1}{4+2-10} \\
& =\frac{-9}{-4} \\
& =\frac{9}{4}
\end{aligned}
$$

(b) (8 points) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}+3 x-4}$

Solution: In this case, substituting in $x=1$ yields $\frac{0}{0}$, meaning there is more work to do. So, we factor:

$$
x^{2}+x-2=(x+2)(x-1)
$$

and

$$
x^{2}+3 x-4=(x+4)(x-1)
$$

Therefore we observe that

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}+3 x-4} & =\lim _{x \rightarrow 1} \frac{(x+2)(x-1)}{(x+4)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x+2}{x+4} \\
& =\frac{1+2}{1+4} \\
& =\frac{3}{5}
\end{aligned}
$$

(c) (8 points) $\lim _{x \rightarrow 4} \frac{\sqrt{3 x+4}-4}{x-4}$

Solution: Substituting in $x=4$ yields $\frac{0}{0}$, meaning there is more work to do. So, we will multiply the function by a "convenient form of one" using the "algebraic conjugate" of the numerator, i.e.

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\sqrt{3 x+4}-4}{x-4} & =\lim _{x \rightarrow 4}\left(\frac{\sqrt{3 x+4}-4}{x-4}\right)\left(\frac{\sqrt{3 x+4}+4}{\sqrt{3 x+4}+4}\right) \\
& =\lim _{x \rightarrow 4} \frac{3 x+4-16}{(x-4)(\sqrt{3 x+4}+4)} \\
& =\lim _{x \rightarrow 4} \frac{3 x-12}{(x-4)(\sqrt{3 x+4}+4)} \\
& =\lim _{x \rightarrow 4} \frac{3(x-4)}{(x-4)(\sqrt{3 x+4}+4)} \\
& =\lim _{x \rightarrow 4} \frac{3}{\sqrt{3 x+4}+4} \\
& =\frac{3}{\sqrt{12+4}+4} \\
& =\frac{3}{\sqrt{16}+4} \\
& =\frac{3}{8}
\end{aligned}
$$

(d) (8 points) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\sin (2 x)}$

Solution: Substituting $x=0$ yields $\frac{0}{0}$. So we recall the limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ and compute

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\sin (2 x)} & =\lim _{x \rightarrow 0}\left(\frac{\sin (5 x)}{\sin (2 x)}\right) \\
& =\underbrace{\left(\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}\right)}_{=1} \underbrace{\left(\frac{5 x}{5 x}\right)\left(\frac{2 x}{2 x}\right)}_{=1}(\underbrace{\left(\lim _{x \rightarrow 0} \frac{2 x}{\sin (2 x)}\right)}_{x \rightarrow 0}\left(\lim _{x \rightarrow 0} \frac{5 x}{2}\right) \\
& =1 \cdot 1 \cdot \frac{5}{2} \\
& =\frac{5}{2} .
\end{aligned}
$$

(e) (8 points) $\lim _{x \rightarrow 0} \frac{\sqrt{5 x+2}-x}{\sqrt{x+3}+2 x}$

Solution: In this case, substituting $x=0$ works fine:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{5 x+2}-x}{\sqrt{x+3}+2 x} & =\frac{\sqrt{0+2}-0}{\sqrt{0+3}+0} \\
& =\frac{\sqrt{2}}{\sqrt{3}}
\end{aligned}
$$

5. (6 points) The following limit is known: $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (3 x)}=0$. Explain why this is the case with explicit reference to the relevant known limits for trigonometric functions.
Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (3 x)} & =\lim _{x \rightarrow 0}\left(\frac{1-\cos (x)}{\sin (3 x)}\right) \\
& =\underbrace{\left(\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}\right)}_{=0} \underbrace{\left(\frac{3 x}{3 x}\right)}_{=1} \\
& =0 \cdot 1 \cdot \frac{1}{3}=0 .
\end{aligned}
$$

6. (8 points) Electrical power P is related to the current I and voltage V by the equation $P=V I$.
(a) (2 points) Solve the formula for the voltage V.

Solution: $V=\frac{P}{I}$
(b) (4 points) Using your answer to (a), if the power remains at a constant value $P=2$, then what happens to voltage in the limit as $I \rightarrow 0^{+}$?
Solution: $\lim _{I \rightarrow 0^{+}} V=\lim _{I \rightarrow 0^{+}} \frac{2}{I}=+\infty$
(c) (2 points) What does this mean about reality? That is, please describe in your own words what part (b) suggests about how these quantities are related.
Solution: If the power is held constant and the current goes to zero, then the voltage must increase toward infinity.
7. (14 points) Recall that a function is continuous at a point $x=a$ whenever $\lim _{x \rightarrow a} f(x)=f(a)$.

Find the value of k that makes the given piecewise function into a continuous function.
(a) (7 points) $f(x)= \begin{cases}x^{2}-7 x+2, & x \geq k \\ x^{2}+x+1, & x<k .\end{cases}$

Solution: We must find k so that

$$
\lim _{x \rightarrow k^{+}} f(x)=\lim _{x \rightarrow k^{-}} f(x)
$$

So, compute the left-hand side:

$$
\lim _{x \rightarrow k^{+}} f(x)=k^{2}-7 k+2
$$

and the right-hand side:

$$
\lim _{x \rightarrow k^{-}} f(x)=k^{2}+k+1
$$

In order for the function to be continuous at $x=k$, we need these two values to be equal, i.e.

$$
k^{2}-7 k+2=k^{2}+k+1
$$

So, subtract k^{2} to get $-7 k+2=k+1$ and thus $1=8 k$, so $k=\frac{1}{8}$.
(b) (7 points) $g(x)= \begin{cases}x^{2}-3 x+1, & x<2 \\ 5 x-k, & x \geq 2 .\end{cases}$

Solution: In this case, we need to find the value of k so that

$$
\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{+}} g(x)
$$

Similar to the previous problem, this results in the equation

$$
4-6+1=10-k
$$

and so solving for k yields

$$
k=10+6-4-1=11
$$

