Quiz 8 - MATH 2510 Spring 2023
Recall the axioms of the theory of first order arithmetic:

$$
\begin{aligned}
& \text { (1) }(\forall x)(0 \neq S x) \\
& \text { (2) }(\forall x)(\forall y)(S x=S y \rightarrow x=y) \\
& \text { (}(\forall y)(y=0 \vee(\exists x)(S x=y)) \\
& \text { (1) }(\forall x)(x+0=x) \\
& \text { (1) }(\forall x)(\forall y)(x+S y=S(x+y)) \\
& \text { (1) }(\forall x)(x \cdot 0=0) \\
& \text { () }(\forall x)(\forall y)(x \cdot S y=(x \cdot y)+x) \\
& \text { (1) }(\forall x)(\forall y)(x+y=y+x) \\
& \text { () }(\forall x)(\forall y)(x \cdot y=y \cdot x)
\end{aligned}
$$

Prove that $a+0=0 \longleftrightarrow a=0$ is a theorem of 1 st order arithmetic.

