Written HW15 - MATH 1540 Spring 2023
The so-called Chebyshev polynomials (of the first kind), written $T_{n}(x)$, are given by the formula

$$
\begin{equation*}
T_{n}(x)=\cos (n \arccos (x)) \tag{1}
\end{equation*}
$$

for $n=0,1,2, \ldots$ and for $-1 \leq x \leq 1$. In this homework, you will derive the formulas for some of the Chebyshev polynomials.

For the following problems your knowledge of inverse trigonometric functions as well as the double angle identity

$$
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)
$$

and the sum of angles identity

$$
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)
$$

will be needed.

1. Write down equation (1) for $n=1$. Simplify until you arrive at a traditional polynomial in the variable x.
2. Write down equation (1) for $n=2$. Simplify until you arrive at a traditional polynomial in the variable x.
3. Write down equation (1) for $n=3$. Simplify until you arrive at a traditional polynomial in the variable x.
(note: Chebyshev polynomials are traditionally appear in "approximation theory", where they are used in finding polynomial approximations of more complicated functions - this ends up being important for many computer simulations of scientific phenomena)
