Problem 11

For each positive integer n, let $p_n = 1 - \frac{1}{n}$. Show that the sequence $p_1, p_2, ..., p_n$ converges to 1. **Proof**: Let (a, b) be an open interval containing 1. Choose $\in = min\{|1 - a|, |1 - b|\}$. Pick $N \in \mathbb{Z}$ such that $N > \frac{1}{\epsilon}$. Let n > N, so $n > \frac{1}{\epsilon}$ and $\frac{1}{n} < \epsilon$ by Axiom 6. So, $\left|1 - (1 - \frac{1}{n})\right| = \frac{1}{n} < \epsilon$. Hence, $p_n = 1 - \frac{1}{n}$ converges to 1.